Skip to contents

Introduction

Heterogeneity analysis is a way to explore how the results of a model can vary depending on the characteristics of individuals in a population, and demographic analysis estimates the average values of a model over an entire population.

In practice these two analyses naturally complement each other: heterogeneity analysis runs the model on multiple sets of parameters (reflecting different characteristics found in the target population), and demographic analysis combines the results.

For this example we will use the result from the assessment of a new total hip replacement previously described in vignette("d-non-homogeneous", "heemod").

Population characteristics

The characteristics of the population are input from a table, with one column per parameter and one row per individual. Those may be for example the characteristics of the indiviuals included in the original trial data.

For this example we will use the characteristics of 100 individuals, with varying sex and age, specified in the data frame tab_indiv:

tab_indiv
## # A tibble: 100 × 2
##      age   sex
##    <dbl> <int>
##  1    56     1
##  2    61     0
##  3    47     1
##  4    52     0
##  5    42     0
##  6    71     1
##  7    61     1
##  8    70     1
##  9    60     1
## 10    50     1
## # ℹ 90 more rows
library(ggplot2)
ggplot(tab_indiv, aes(x = age)) +
  geom_histogram(binwidth = 2)

Running the analysis

res_mod, the result we obtained from run_model() in the Time-varying Markov models vignette, can be passed to update() to update the model with the new data and perform the heterogeneity analysis.

res_h <- update(res_mod, newdata = tab_indiv)
## No weights specified in update, using equal weights.
## Updating strategy 'standard'...
## Updating strategy 'np1'...

Interpreting results

The summary() method reports summary statistics for cost, effect and ICER, as well as the result from the combined model.

summary(res_h)
## An analysis re-run on 100 parameter sets.
## 
## * Unweighted analysis.
## 
## * Values distribution:
## 
##                                  Min.      1st Qu.      Median        Mean
## standard - Cost          543.46225608  605.0062810 626.3537753 683.4291651
## standard - Effect         10.06345874   23.3226486  27.7806580  25.8050372
## standard - Cost Diff.               -            -           -           -
## standard - Effect Diff.             -            -           -           -
## standard - Icer                     -            -           -           -
## np1 - Cost               618.86571941  635.5509751 641.3547975 657.9045025
## np1 - Effect              10.13073146   23.4706053  27.9754765  26.0569701
## np1 - Cost Diff.        -165.40882382  -99.5031416  15.0010223 -25.5246626
## np1 - Effect Diff.         0.06727271    0.1756522   0.2162479   0.2519328
## np1 - Icer              -354.56585682 -304.0330575  65.6679900   7.0276560
##                             3rd Qu.        Max.
## standard - Cost         786.6690449 878.7813785
## standard - Effect        29.0596426  31.5292548
## standard - Cost Diff.             -           -
## standard - Effect Diff.           -           -
## standard - Icer                   -           -
## np1 - Cost              687.1659033 713.3725547
## np1 - Effect             29.2683350  31.7651919
## np1 - Cost Diff.         30.5446941  75.4034633
## np1 - Effect Diff.        0.3272774   0.4665109
## np1 - Icer              156.7853582 956.9156706
## 
## * Combined result:
## 
## 2 strategies run for 60 cycles.
## 
## Initial state counts:
## 
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
## 
## Counting method: 'beginning'.
## 
## Values:
## 
##           utility     cost
## standard 25805.04 683429.2
## np1      26056.97 657904.5
## 
## Efficiency frontier:
## 
## np1
## 
## Differences:
## 
##     Cost Diff. Effect Diff.      ICER     Ref.
## np1  -25.52466    0.2519328 -101.3153 standard

The variation of cost or effect can then be plotted.

plot(res_h, result = "effect", binwidth = 5)

plot(res_h, result = "cost", binwidth = 50)

plot(res_h, result = "icer", type = "difference",
     binwidth = 500)

plot(res_h, result = "effect", type = "difference",
     binwidth = .1)

plot(res_h, result = "cost", type = "difference",
     binwidth = 30)

The results from the combined model can be plotted similarly to the results from run_model().

plot(res_h, type = "counts")

Weighted results

Weights can be used in the analysis by including an optional column .weights in the new data to specify the respective weights of each strata in the target population.

tab_indiv_w
## # A tibble: 100 × 3
##      age   sex .weights
##    <dbl> <int>    <dbl>
##  1    45     0   0.0590
##  2    59     1   0.228 
##  3    61     1   0.850 
##  4    46     0   0.844 
##  5    67     0   0.952 
##  6    66     1   0.480 
##  7    53     0   0.245 
##  8    76     1   0.659 
##  9    66     0   0.0165
## 10    55     1   0.165 
## # ℹ 90 more rows
res_w <- update(res_mod, newdata = tab_indiv_w)
## Updating strategy 'standard'...
## Updating strategy 'np1'...
res_w
## An analysis re-run on 100 parameter sets.
## 
## * Weights distribution:
## 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00389 0.22690 0.45408 0.46025 0.67205 0.99822 
## 
## Total weight: 46.02452
## 
## * Values distribution:
## 
##                                  Min.      1st Qu.     Median        Mean
## standard - Cost          438.70535048  613.9316623 629.415647 691.1999825
## standard - Effect          6.12465030   24.4991251  27.780658  26.0184616
## standard - Cost Diff.               -            -          -           -
## standard - Effect Diff.             -            -          -           -
## standard - Icer                     -            -          -           -
## np1 - Cost               590.76054210  637.9767000 642.187795 660.1213847
## np1 - Effect               6.13624942   24.8264025  27.975477  26.2797727
## np1 - Cost Diff.        -165.40882382 -122.7948420  12.772148 -31.0785979
## np1 - Effect Diff.         0.01159912    0.1959412   0.220806   0.2613111
## np1 - Icer              -354.56585682 -327.6476693  54.727146 212.7581144
##                             3rd Qu.         Max.
## standard - Cost         819.1977737 8.787814e+02
## standard - Effect        29.1382106 3.152925e+01
## standard - Cost Diff.             -            -
## standard - Effect Diff.           -            -
## standard - Icer                   -            -
## np1 - Cost              696.4029317 7.133726e+02
## np1 - Effect             29.3758145 3.176519e+01
## np1 - Cost Diff.         24.0450377 1.520552e+02
## np1 - Effect Diff.        0.3747771 4.665109e-01
## np1 - Icer              115.2176112 1.310920e+04
## 
## * Combined result:
## 
## 2 strategies run for 60 cycles.
## 
## Initial state counts:
## 
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
## 
## Counting method: 'beginning'.
## 
## Values:
## 
##           utility     cost
## standard 26018.46 691200.0
## np1      26279.77 660121.4
## 
## Efficiency frontier:
## 
## np1
## 
## Differences:
## 
##     Cost Diff. Effect Diff.      ICER     Ref.
## np1   -31.0786    0.2613111 -118.9333 standard

Parallel computing

Updating can be significantly sped up by using parallel computing. This can be done in the following way:

  • Define a cluster with the use_cluster() functions (i.e. use_cluster(4) to use 4 cores).
  • Run the analysis as usual.
  • To stop using parallel computing use the close_cluster() function.

Results may vary depending on the machine, but we found speed gains to be quite limited beyond 4 cores.