Skip to content

edsteva.viz.plots.probe.wrapper

probe_plot

probe_plot(
    probe: BaseProbe,
    fitted_model: BaseModel = None,
    care_site_level: List[str] = None,
    start_date: datetime = None,
    end_date: datetime = None,
    save_path: str = None,
    legend_predictor: str = "Predictor c(t)",
    legend_model: str = "Model f(t)",
    x_axis_title: str = None,
    y_axis_title: str = None,
    main_chart_config: Dict[str, float] = None,
    model_line_config: Dict[str, str] = None,
    probe_line_config: Dict[str, str] = None,
    chart_style: Dict[str, float] = None,
    indexes_to_remove: List[str] = None,
    **kwargs
)

Displays a chart with the average completeness predictor \(c(t)\) over time \(t\) with the fitted model \(\hat{c}(t)\) if specified. The chart is exportable in png or svg format and easy to integrate into a report. Is also possible to save the chart in HTML with the "save_path" optional input.

PARAMETER DESCRIPTION
probe

Class describing the completeness predictor \(c(t)\).

TYPE: BaseProbe

fitted_model

Model fitted to the probe

TYPE: BaseModel DEFAULT: None

care_site_level

EXAMPLE: ["Hospital"], ["Hôpital", "UF"] or ["UF", "UH"]

TYPE: List[str] DEFAULT: None

start_date

EXAMPLE: "2019-05-01"

TYPE: datetime DEFAULT: None

end_date

EXAMPLE: "2021-07-01"

TYPE: datetime DEFAULT: None

save_path

Folder path where to save the chart in HTML format.

EXAMPLE: "my_folder/my_file.html"

TYPE: str DEFAULT: None

legend_predictor

Label name for the predictor legend.

TYPE: str DEFAULT: 'Predictor c(t)'

legend_model

Label name for the model legend.

TYPE: str DEFAULT: 'Model f(t)'

x_axis_title

Label name for the x axis.

TYPE: str DEFAULT: None

y_axis_title

Label name for the y axis.

TYPE: str DEFAULT: None

main_chart_config

If not None, configuration used to construct the top main chart.

TYPE: Dict[str, float] DEFAULT: None

model_line_config

If not None, configuration used to construct the model line.

TYPE: Dict[str, str] DEFAULT: None

probe_line_config

If not None, configuration used to construct the probe line.

TYPE: Dict[str, str] DEFAULT: None

chart_style

If not None, configuration used to configure the chart style.

EXAMPLE: {"labelFontSize": 13, "titleFontSize": 14}

TYPE: Dict[str, float] DEFAULT: None

indexes_to_remove

indexes to remove from the groupby selection.

TYPE: List[str] DEFAULT: None

Source code in edsteva/viz/plots/probe/wrapper.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def probe_plot(
    probe: BaseProbe,
    fitted_model: BaseModel = None,
    care_site_level: List[str] = None,
    start_date: datetime = None,
    end_date: datetime = None,
    save_path: str = None,
    legend_predictor: str = "Predictor c(t)",
    legend_model: str = "Model f(t)",
    x_axis_title: str = None,
    y_axis_title: str = None,
    main_chart_config: Dict[str, float] = None,
    model_line_config: Dict[str, str] = None,
    probe_line_config: Dict[str, str] = None,
    chart_style: Dict[str, float] = None,
    indexes_to_remove: List[str] = None,
    **kwargs,
):
    r"""
    Displays a chart with the average completeness predictor $c(t)$ over time $t$ with the fitted model $\hat{c}(t)$ if specified.
    The chart is exportable in png or svg format and easy to integrate into a report. Is also possible to save the chart in HTML with the "save_path" optional input.

    Parameters
    ----------
    probe : BaseProbe
        Class describing the completeness predictor $c(t)$.
    fitted_model : BaseModel, optional
        Model fitted to the probe
    care_site_level : List[str], optional
        **EXAMPLE**: `["Hospital"]`, `["Hôpital", "UF"]` or `["UF", "UH"]`
    start_date : datetime, optional
        **EXAMPLE**: `"2019-05-01"`
    end_date : datetime, optional
        **EXAMPLE**: `"2021-07-01"`
    save_path : str, optional
        Folder path where to save the chart in HTML format.

        **EXAMPLE**: `"my_folder/my_file.html"`
    legend_predictor: str, optional,
        Label name for the predictor legend.
    legend_model: str, optional,
        Label name for the model legend.
    x_axis_title: str, optional,
        Label name for the x axis.
    y_axis_title: str, optional,
        Label name for the y axis.
    main_chart_config: Dict[str, str], optional
        If not None, configuration used to construct the top main chart.
    model_line_config: Dict[str, str], optional
        If not None, configuration used to construct the model line.
    probe_line_config: Dict[str, str], optional
        If not None, configuration used to construct the probe line.
    chart_style: Dict[str, float], optional
        If not None, configuration used to configure the chart style.

        **EXAMPLE**: `{"labelFontSize": 13, "titleFontSize": 14}`
    indexes_to_remove: List[str], optional
        indexes to remove from the groupby selection.
    """
    alt.data_transformers.enable("default")
    alt.data_transformers.disable_max_rows()

    probe_config = deepcopy(probe.get_viz_config("probe_plot"))
    if main_chart_config is None:
        main_chart_config = probe_config["main_chart"]
    if chart_style is None:
        chart_style = probe_config["chart_style"]
    indexes = get_indexes_to_groupby(
        predictor_columns=probe.predictor.columns,
        predictor_metrics=probe._metrics.copy(),
        indexes_to_remove=indexes_to_remove,
    )

    if fitted_model:
        predictor = fitted_model.predict(probe).copy()
    else:
        predictor = probe.predictor.copy()

    predictor = filter_data(
        data=predictor,
        care_site_level=care_site_level,
        start_date=start_date,
        end_date=end_date,
        **kwargs,
    )

    indexes = [
        {
            "field": variable["field"],
            "title": variable["field"].replace("_", " ").capitalize(),
        }
        for variable in indexes
        if variable["field"] in predictor.columns
        and len(predictor[variable["field"]].unique()) >= 2
    ]

    if fitted_model:
        model_config = deepcopy(fitted_model.get_viz_config("probe_plot"))
        if model_line_config is None:
            model_line_config = model_config["model_line"]
        if probe_line_config is None:
            probe_line_config = model_config["probe_line"]
        chart = fitted_probe_line(
            predictor=predictor,
            indexes=indexes,
            legend_predictor=legend_predictor,
            legend_model=legend_model,
            x_axis_title=x_axis_title,
            y_axis_title=y_axis_title,
            main_chart_config=main_chart_config,
            model_line_config=model_line_config,
            probe_line_config=probe_line_config,
        )
    else:
        chart = probe_line(
            predictor=predictor,
            indexes=indexes,
            x_axis_title=x_axis_title,
            y_axis_title=y_axis_title,
            main_chart_config=main_chart_config,
        )

    if save_path:
        save_html(
            obj=configure_style(chart=chart, chart_style=chart_style),
            filename=save_path,
        )

    return chart