Skip to content

edsteva.viz.plots.estimates_densities.estimates_densities

estimates_densities_plot

estimates_densities_plot(
    fitted_model: BaseModel,
    probe: BaseProbe = None,
    care_site_level: List[str] = None,
    start_date: Union[datetime, str] = None,
    end_date: Union[datetime, str] = None,
    save_path: str = None,
    vertical_bar_charts_config: Dict[str, str] = None,
    horizontal_bar_charts_config: Dict[str, str] = None,
    chart_style: Dict[str, float] = None,
    y_axis_title: str = None,
    **kwargs
)

Displays the density plot with the associated box plot of each estimate and metric computed in the input model. It can help you to set the thresholds.

PARAMETER DESCRIPTION
probe

Class describing the completeness predictor \(c(t)\)

TYPE: BaseProbe DEFAULT: None

fitted_model

Model with estimates of interest.

EXAMPLE: StepFunction Model with \((\hat{t_0}, \hat{c_0})\)

TYPE: BaseModel

care_site_level

EXAMPLE: ["Hospital"], ["Hôpital", "UF"] or ["UF", "UH"]

TYPE: List[str] DEFAULT: None

start_date

EXAMPLE: "2019-05-01"

TYPE: datetime DEFAULT: None

end_date

EXAMPLE: "2021-07-01"

TYPE: datetime DEFAULT: None

save_path

Folder path where to save the chart in HTML format.

TYPE: str DEFAULT: None

vertical_bar_charts_config

Configuration used to construct the vertical bar charts.

TYPE: Dict[str, str] DEFAULT: None

horizontal_bar_charts_config

Configuration used to construct the horizontal bar charts.

TYPE: Dict[str, str] DEFAULT: None

chart_style

Configuration used to configure the chart style.

EXAMPLE: {"labelFontSize": 13, "titleFontSize": 14}

TYPE: Dict[str, float] DEFAULT: None

y_axis_title

Label name for the y axis.

TYPE: str DEFAULT: None

Source code in edsteva/viz/plots/estimates_densities/estimates_densities.py
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def estimates_densities_plot(
    fitted_model: BaseModel,
    probe: BaseProbe = None,
    care_site_level: List[str] = None,
    start_date: Union[datetime, str] = None,
    end_date: Union[datetime, str] = None,
    save_path: str = None,
    vertical_bar_charts_config: Dict[str, str] = None,
    horizontal_bar_charts_config: Dict[str, str] = None,
    chart_style: Dict[str, float] = None,
    y_axis_title: str = None,
    **kwargs,
):
    r"""Displays the density plot with the associated box plot of each estimate and metric computed in the input model. It can help you to set the thresholds.


    Parameters
    ----------
    probe : BaseProbe
        Class describing the completeness predictor $c(t)$
    fitted_model : BaseModel
        Model with estimates of interest.

        **EXAMPLE**: StepFunction Model with $(\hat{t_0}, \hat{c_0})$
    care_site_level : List[str], optional
        **EXAMPLE**: `["Hospital"]`, `["Hôpital", "UF"]` or `["UF", "UH"]`
    start_date : datetime, optional
        **EXAMPLE**: `"2019-05-01"`
    end_date : datetime, optional
        **EXAMPLE**: `"2021-07-01"`
    save_path : str, optional
        Folder path where to save the chart in HTML format.
    vertical_bar_charts_config: Dict[str, str], optional
        Configuration used to construct the vertical bar charts.
    horizontal_bar_charts_config: Dict[str, str], optional
        Configuration used to construct the horizontal bar charts.
    chart_style: Dict[str, float], optional
        Configuration used to configure the chart style.

        **EXAMPLE**: `{"labelFontSize": 13, "titleFontSize": 14}`
    y_axis_title: str, optional,
        Label name for the y axis.
    """
    alt.data_transformers.disable_max_rows()

    estimates = fitted_model.estimates.copy()
    estimates = filter_data(
        data=estimates,
        table_name="estimates",
        care_site_level=care_site_level,
        **kwargs,
    )
    if probe is not None:
        predictor = probe.predictor.copy()
        # Filter data in predictor not in estimates
        predictor = predictor.merge(
            estimates[list(estimates.columns.intersection(set(predictor.columns)))],
            on=list(estimates.columns.intersection(set(predictor.columns))),
        )
        predictor = filter_data(
            data=predictor,
            start_date=start_date,
            end_date=end_date,
        )
        estimates = probe.add_names_columns(estimates)
        probe_config = deepcopy(probe.get_viz_config("estimates_densities_plot"))
        if vertical_bar_charts_config is None:
            vertical_bar_charts_config = probe_config["vertical_bar_charts"]
        if horizontal_bar_charts_config is None:
            horizontal_bar_charts_config = probe_config["horizontal_bar_charts"]
        if chart_style is None:
            chart_style = probe_config["chart_style"]

    quantitative_estimates = []
    time_estimates = []

    base_estimate = alt.Chart(estimates)
    for estimate in fitted_model._coefs + fitted_model._metrics:
        if estimates[estimate].dtype == float or estimates[estimate].dtype == int:
            max_value = estimates[estimate].max()
            min_value = estimates[estimate].min()
            estimates[estimate] = round(estimates[estimate], 3)

            estimate_density = (
                alt.vconcat(
                    (
                        (
                            base_estimate.transform_density(
                                estimate,
                                as_=[estimate, "Density"],
                                extent=[min_value, max_value],
                            )
                            .mark_area()
                            .encode(
                                x=alt.X("{}:Q".format(estimate), title=None),
                                y=alt.Y("Density:Q", title=y_axis_title),
                            )
                        )
                        + base_estimate.mark_rule(color="red").encode(
                            x="median({}):Q".format(estimate),
                            tooltip=alt.Tooltip("median({}):Q".format(estimate)),
                        )
                    ).properties(width=800, height=300),
                    (
                        base_estimate.mark_tick().encode(
                            x=alt.X("{}:Q".format(estimate), axis=None)
                        )
                    ),
                    spacing=0,
                )
                & (
                    base_estimate.mark_boxplot().encode(
                        x="{}:Q".format(estimate),
                    )
                )
            ).resolve_scale(x="shared")
            quantitative_estimates.append(estimate_density)

        else:
            estimates[estimate] = estimates[estimate].astype("datetime64[ns]")
            estimate_density = (
                (
                    base_estimate.transform_timeunit(
                        estimate="yearmonth({})".format(estimate)
                    )
                    .mark_bar(size=10)
                    .encode(
                        x=alt.X(
                            "{}:T".format(estimate),
                            axis=alt.Axis(
                                tickCount="month",
                                format="%Y, %b",
                                labelAngle=-90,
                            ),
                            title=estimate,
                        ),
                        y=alt.Y(
                            "count({}):Q".format(estimate),
                            axis=alt.Axis(tickMinStep=1),
                            title=y_axis_title,
                        ),
                    )
                )
                + base_estimate.mark_rule(color="red").encode(
                    x="median({}):T".format(estimate),
                    tooltip=alt.Tooltip("median({}):T".format(estimate)),
                )
            ).properties(width=800, height=300)
            time_estimates.append(estimate_density)

    estimates_densities = time_estimates + quantitative_estimates

    chart = reduce(
        lambda estimate_density_1, estimate_density_2: estimate_density_1
        & estimate_density_2,
        estimates_densities,
    )
    if probe is not None:
        base = alt.Chart(predictor)

        horizontal_bar_charts, y_variables_selections = generate_horizontal_bar_charts(
            base=base,
            horizontal_bar_charts_config=horizontal_bar_charts_config,
            predictor=predictor,
        )
        vertical_bar_charts, x_variables_selections = generate_vertical_bar_charts(
            base=base,
            vertical_bar_charts_config=vertical_bar_charts_config,
            predictor=predictor,
        )

        selections = dict(
            y_variables_selections,
            **x_variables_selections,
        )
        selection_charts = dict(
            horizontal_bar_charts,
            **vertical_bar_charts,
        )
        chart = add_interactive_selection(
            base=chart, selection_charts=selection_charts, selections=selections
        )

        chart = concatenate_charts(
            main_chart=chart,
            horizontal_bar_charts=horizontal_bar_charts,
            vertical_bar_charts=vertical_bar_charts,
            spacing=0,
        )
    elif "care_site_level" in estimates.columns:
        care_site_level_dropdwon = alt.binding_select(
            options=estimates["care_site_level"].unique(), name="Care site level : "
        )
        care_site_level_selection = alt.selection_point(
            fields=["care_site_level"],
            bind=care_site_level_dropdwon,
            value=estimates["care_site_level"].unique()[0],
        )
        chart = chart.add_params(care_site_level_selection).transform_filter(
            care_site_level_selection
        )
    if chart_style:
        chart = configure_style(chart=chart, chart_style=chart_style)
    if save_path:
        save_html(
            obj=chart,
            filename=save_path,
        )

    return chart