Skip to content

edsteva.viz.dashboards.probe.wrapper

probe_dashboard

probe_dashboard(
    probe: BaseProbe,
    fitted_model: BaseModel = None,
    care_site_level: List[str] = None,
    save_path: str = None,
    legend_predictor: str = "Predictor c(t)",
    legend_model: str = "Model f(t)",
    x_axis_title: str = None,
    y_axis_title: str = None,
    main_chart_config: Dict[str, float] = None,
    model_line_config: Dict[str, str] = None,
    probe_line_config: Dict[str, str] = None,
    vertical_bar_charts_config: Dict[str, str] = None,
    horizontal_bar_charts_config: Dict[str, str] = None,
    time_line_config: Dict[str, str] = None,
    chart_style: Dict[str, float] = None,
    **kwargs
)

Displays an interactive chart with:

  • On the top, the aggregated average completeness predictor \(c(t)\) over time \(t\) with the fitted model \(\hat{c}(t)\) if specified.
  • On the bottom, interactive filters including all the concepts in the Probe (such as time, care site, number of visits...etc.)

Is is possible to save the chart in HTML with the "save_path" optional input.

PARAMETER DESCRIPTION
probe

Class describing the completeness predictor \(c(t)\).

TYPE: BaseProbe

fitted_model

Model fitted to the probe.

TYPE: BaseModel DEFAULT: None

care_site_level

EXAMPLE: ["Hospital"], ["Hôpital", "UF"] or ["UF", "UH"]

TYPE: List[str] DEFAULT: None

save_path

Folder path where to save the chart in HTML format.

EXAMPLE: "my_folder/my_file.html"

TYPE: str DEFAULT: None

legend_predictor

Label name for the predictor legend.

TYPE: str DEFAULT: 'Predictor c(t)'

legend_model

Label name for the model legend.

TYPE: str DEFAULT: 'Model f(t)'

x_axis_title

Label name for the x axis.

TYPE: str DEFAULT: None

y_axis_title

Label name for the y axis.

TYPE: str DEFAULT: None

main_chart_config

If not None, configuration used to construct the top main chart.

TYPE: Dict[str, float] DEFAULT: None

model_line_config

If not None, configuration used to construct the model line.

TYPE: Dict[str, str] DEFAULT: None

probe_line_config

If not None, configuration used to construct the probe line.

TYPE: Dict[str, str] DEFAULT: None

vertical_bar_charts_config

If not None, configuration used to construct the vertical bar charts.

TYPE: Dict[str, str] DEFAULT: None

horizontal_bar_charts_config

If not None, configuration used to construct the horizontal bar charts.

TYPE: Dict[str, str] DEFAULT: None

time_line_config

If not None, configuration used to construct the time line.

TYPE: Dict[str, str] DEFAULT: None

chart_style

If not None, configuration used to configure the chart style.

EXAMPLE: {"labelFontSize": 13, "titleFontSize": 14}

TYPE: Dict[str, float] DEFAULT: None

Source code in edsteva/viz/dashboards/probe/wrapper.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def probe_dashboard(
    probe: BaseProbe,
    fitted_model: BaseModel = None,
    care_site_level: List[str] = None,
    save_path: str = None,
    legend_predictor: str = "Predictor c(t)",
    legend_model: str = "Model f(t)",
    x_axis_title: str = None,
    y_axis_title: str = None,
    main_chart_config: Dict[str, float] = None,
    model_line_config: Dict[str, str] = None,
    probe_line_config: Dict[str, str] = None,
    vertical_bar_charts_config: Dict[str, str] = None,
    horizontal_bar_charts_config: Dict[str, str] = None,
    time_line_config: Dict[str, str] = None,
    chart_style: Dict[str, float] = None,
    **kwargs,
):
    r"""Displays an interactive chart with:

    - On the top, the aggregated average completeness predictor $c(t)$ over time $t$ with the fitted model $\hat{c}(t)$ if specified.
    - On the bottom, interactive filters including all the concepts in the [Probe][probe] (such as time, care site, number of visits...etc.)

    Is is possible to save the chart in HTML with the "save_path" optional input.

    Parameters
    ----------
    probe : BaseProbe
        Class describing the completeness predictor $c(t)$.
    fitted_model : BaseModel, optional
        Model fitted to the probe.
    care_site_level : List[str], optional
        **EXAMPLE**: `["Hospital"]`, `["Hôpital", "UF"]` or `["UF", "UH"]`
    save_path : str, optional
        Folder path where to save the chart in HTML format.

        **EXAMPLE**: `"my_folder/my_file.html"`
    legend_predictor: str, optional,
        Label name for the predictor legend.
    legend_model: str, optional,
        Label name for the model legend.
    x_axis_title: str, optional,
        Label name for the x axis.
    y_axis_title: str, optional,
        Label name for the y axis.
    main_chart_config: Dict[str, str], optional
        If not None, configuration used to construct the top main chart.
    model_line_config: Dict[str, str], optional
        If not None, configuration used to construct the model line.
    probe_line_config: Dict[str, str], optional
        If not None, configuration used to construct the probe line.
    vertical_bar_charts_config: Dict[str, str], optional
        If not None, configuration used to construct the vertical bar charts.
    horizontal_bar_charts_config: Dict[str, str], optional
        If not None, configuration used to construct the horizontal bar charts.
    time_line_config: Dict[str, str], optional
        If not None, configuration used to construct the time line.
    chart_style: Dict[str, float], optional
        If not None, configuration used to configure the chart style.

        **EXAMPLE**: `{"labelFontSize": 13, "titleFontSize": 14}`
    """

    alt.data_transformers.enable("default")
    alt.data_transformers.disable_max_rows()

    probe_config = deepcopy(probe.get_viz_config("probe_dashboard"))
    if fitted_model:
        model_config = deepcopy(fitted_model.get_viz_config("probe_dashboard"))
        if model_line_config is None:
            model_line_config = model_config["model_line"]
        if probe_line_config is None:
            probe_line_config = model_config["probe_line"]
    if main_chart_config is None:
        main_chart_config = probe_config["main_chart"]
    if time_line_config is None:
        time_line_config = probe_config["time_line"]
    if vertical_bar_charts_config is None:
        vertical_bar_charts_config = probe_config["vertical_bar_charts"]
        if fitted_model:
            vertical_bar_charts_config["y"] = (
                vertical_bar_charts_config["y"]
                + model_config["extra_vertical_bar_charts"]
            )
    if horizontal_bar_charts_config is None:
        horizontal_bar_charts_config = probe_config["horizontal_bar_charts"]
        if fitted_model:
            horizontal_bar_charts_config["x"] = (
                horizontal_bar_charts_config["x"]
                + model_config["extra_horizontal_bar_charts"]
            )
    if chart_style is None:
        chart_style = probe_config["chart_style"]

    predictor = fitted_model.predict(probe) if fitted_model else probe.predictor.copy()
    predictor = filter_data(
        data=predictor,
        care_site_level=care_site_level,
        **kwargs,
    )

    if fitted_model:
        chart = fitted_probe_dashboard(
            predictor=predictor,
            legend_predictor=legend_predictor,
            legend_model=legend_model,
            x_axis_title=x_axis_title,
            y_axis_title=y_axis_title,
            main_chart_config=main_chart_config,
            model_line_config=model_line_config,
            probe_line_config=probe_line_config,
            vertical_bar_charts_config=vertical_bar_charts_config,
            horizontal_bar_charts_config=horizontal_bar_charts_config,
            time_line_config=time_line_config,
            chart_style=chart_style,
        )
    else:
        chart = probe_only_dashboard(
            predictor=predictor,
            x_axis_title=x_axis_title,
            y_axis_title=y_axis_title,
            main_chart_config=main_chart_config,
            vertical_bar_charts_config=vertical_bar_charts_config,
            horizontal_bar_charts_config=horizontal_bar_charts_config,
            time_line_config=time_line_config,
            chart_style=chart_style,
        )

    vis_probe = "id" + uuid.uuid4().hex
    new_index_probe_id = "id" + uuid.uuid4().hex
    old_index_probe_id = "id" + uuid.uuid4().hex
    left_shift = "145px" if fitted_model else "45px"
    html_chart = f"""
        <!DOCTYPE html>
        <html>
        <head>
          <script src="https://cdn.jsdelivr.net/npm/vega@{alt.VEGA_VERSION}"></script>
          <script src="https://cdn.jsdelivr.net/npm/vega-lite@{alt.VEGALITE_VERSION}"></script>
          <script src="https://cdn.jsdelivr.net/npm/vega-embed@{alt.VEGAEMBED_VERSION}"></script>
        </head>
        <body>

        <div class="container">
          <div class="row">
            <div>
            <div id={vis_probe}></div>
            </div>
            <div style="position:absolute;left:{left_shift};top:380px;width: -webkit-fill-available;">
            <div id={new_index_probe_id}>
              <div id={old_index_probe_id}></div>
            </div>
            <hr/>
            <h1 style="text-align:center"> Interactive filters </h1>
            </div>
          </div>
        </div>

        <script type="text/javascript">
        vegaEmbed('#{vis_probe}', {chart.to_json(indent=None)}).then(function(result) {{
            const sliders = document.getElementsByClassName('vega-bindings');
            const newparent = document.getElementById('{new_index_probe_id}');
            const oldchild = document.getElementById('{old_index_probe_id}');
            for (var i = 0; i < sliders.length; i++) {{
                if (sliders[i].parentElement.parentElement.id == '{vis_probe}') {{
                    var index_slider = sliders[i]
                    }}
                }}
            newparent.replaceChild(index_slider, oldchild);
            }}).catch(console.error);
        </script>
        </body>
        </html>
        """
    if save_path:
        save_html(
            obj=html_chart,
            filename=save_path,
        )
    else:
        display(HTML(html_chart))