Skip to content

edsteva.viz.dashboards

probe_dashboard

probe_dashboard(
    probe: BaseProbe,
    fitted_model: BaseModel = None,
    care_site_level: List[str] = None,
    save_path: str = None,
    legend_predictor: str = "Predictor c(t)",
    legend_model: str = "Model f(t)",
    x_axis_title: str = None,
    y_axis_title: str = None,
    main_chart_config: Dict[str, float] = None,
    model_line_config: Dict[str, str] = None,
    probe_line_config: Dict[str, str] = None,
    vertical_bar_charts_config: Dict[str, str] = None,
    horizontal_bar_charts_config: Dict[str, str] = None,
    time_line_config: Dict[str, str] = None,
    chart_style: Dict[str, float] = None,
    **kwargs
)

Displays an interactive chart with:

  • On the top, the aggregated average completeness predictor \(c(t)\) over time \(t\) with the fitted model \(\hat{c}(t)\) if specified.
  • On the bottom, interactive filters including all the concepts in the Probe (such as time, care site, number of visits...etc.)

Is is possible to save the chart in HTML with the "save_path" optional input.

PARAMETER DESCRIPTION
probe

Class describing the completeness predictor \(c(t)\).

TYPE: BaseProbe

fitted_model

Model fitted to the probe.

TYPE: BaseModel DEFAULT: None

care_site_level

EXAMPLE: ["Hospital"], ["Hôpital", "UF"] or ["UF", "UH"]

TYPE: List[str] DEFAULT: None

save_path

Folder path where to save the chart in HTML format.

EXAMPLE: "my_folder/my_file.html"

TYPE: str DEFAULT: None

legend_predictor

Label name for the predictor legend.

TYPE: str DEFAULT: 'Predictor c(t)'

legend_model

Label name for the model legend.

TYPE: str DEFAULT: 'Model f(t)'

x_axis_title

Label name for the x axis.

TYPE: str DEFAULT: None

y_axis_title

Label name for the y axis.

TYPE: str DEFAULT: None

main_chart_config

If not None, configuration used to construct the top main chart.

TYPE: Dict[str, float] DEFAULT: None

model_line_config

If not None, configuration used to construct the model line.

TYPE: Dict[str, str] DEFAULT: None

probe_line_config

If not None, configuration used to construct the probe line.

TYPE: Dict[str, str] DEFAULT: None

vertical_bar_charts_config

If not None, configuration used to construct the vertical bar charts.

TYPE: Dict[str, str] DEFAULT: None

horizontal_bar_charts_config

If not None, configuration used to construct the horizontal bar charts.

TYPE: Dict[str, str] DEFAULT: None

time_line_config

If not None, configuration used to construct the time line.

TYPE: Dict[str, str] DEFAULT: None

chart_style

If not None, configuration used to configure the chart style.

EXAMPLE: {"labelFontSize": 13, "titleFontSize": 14}

TYPE: Dict[str, float] DEFAULT: None

Source code in edsteva/viz/dashboards/probe/wrapper.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def probe_dashboard(
    probe: BaseProbe,
    fitted_model: BaseModel = None,
    care_site_level: List[str] = None,
    save_path: str = None,
    legend_predictor: str = "Predictor c(t)",
    legend_model: str = "Model f(t)",
    x_axis_title: str = None,
    y_axis_title: str = None,
    main_chart_config: Dict[str, float] = None,
    model_line_config: Dict[str, str] = None,
    probe_line_config: Dict[str, str] = None,
    vertical_bar_charts_config: Dict[str, str] = None,
    horizontal_bar_charts_config: Dict[str, str] = None,
    time_line_config: Dict[str, str] = None,
    chart_style: Dict[str, float] = None,
    **kwargs,
):
    r"""Displays an interactive chart with:

    - On the top, the aggregated average completeness predictor $c(t)$ over time $t$ with the fitted model $\hat{c}(t)$ if specified.
    - On the bottom, interactive filters including all the concepts in the [Probe][probe] (such as time, care site, number of visits...etc.)

    Is is possible to save the chart in HTML with the "save_path" optional input.

    Parameters
    ----------
    probe : BaseProbe
        Class describing the completeness predictor $c(t)$.
    fitted_model : BaseModel, optional
        Model fitted to the probe.
    care_site_level : List[str], optional
        **EXAMPLE**: `["Hospital"]`, `["Hôpital", "UF"]` or `["UF", "UH"]`
    save_path : str, optional
        Folder path where to save the chart in HTML format.

        **EXAMPLE**: `"my_folder/my_file.html"`
    legend_predictor: str, optional,
        Label name for the predictor legend.
    legend_model: str, optional,
        Label name for the model legend.
    x_axis_title: str, optional,
        Label name for the x axis.
    y_axis_title: str, optional,
        Label name for the y axis.
    main_chart_config: Dict[str, str], optional
        If not None, configuration used to construct the top main chart.
    model_line_config: Dict[str, str], optional
        If not None, configuration used to construct the model line.
    probe_line_config: Dict[str, str], optional
        If not None, configuration used to construct the probe line.
    vertical_bar_charts_config: Dict[str, str], optional
        If not None, configuration used to construct the vertical bar charts.
    horizontal_bar_charts_config: Dict[str, str], optional
        If not None, configuration used to construct the horizontal bar charts.
    time_line_config: Dict[str, str], optional
        If not None, configuration used to construct the time line.
    chart_style: Dict[str, float], optional
        If not None, configuration used to configure the chart style.

        **EXAMPLE**: `{"labelFontSize": 13, "titleFontSize": 14}`
    """

    alt.data_transformers.enable("default")
    alt.data_transformers.disable_max_rows()

    probe_config = deepcopy(probe.get_viz_config("probe_dashboard"))
    if fitted_model:
        model_config = deepcopy(fitted_model.get_viz_config("probe_dashboard"))
        if model_line_config is None:
            model_line_config = model_config["model_line"]
        if probe_line_config is None:
            probe_line_config = model_config["probe_line"]
    if main_chart_config is None:
        main_chart_config = probe_config["main_chart"]
    if time_line_config is None:
        time_line_config = probe_config["time_line"]
    if vertical_bar_charts_config is None:
        vertical_bar_charts_config = probe_config["vertical_bar_charts"]
        if fitted_model:
            vertical_bar_charts_config["y"] = (
                vertical_bar_charts_config["y"]
                + model_config["extra_vertical_bar_charts"]
            )
    if horizontal_bar_charts_config is None:
        horizontal_bar_charts_config = probe_config["horizontal_bar_charts"]
        if fitted_model:
            horizontal_bar_charts_config["x"] = (
                horizontal_bar_charts_config["x"]
                + model_config["extra_horizontal_bar_charts"]
            )
    if chart_style is None:
        chart_style = probe_config["chart_style"]

    predictor = fitted_model.predict(probe) if fitted_model else probe.predictor.copy()
    predictor = filter_data(
        data=predictor,
        care_site_level=care_site_level,
        **kwargs,
    )

    if fitted_model:
        chart = fitted_probe_dashboard(
            predictor=predictor,
            legend_predictor=legend_predictor,
            legend_model=legend_model,
            x_axis_title=x_axis_title,
            y_axis_title=y_axis_title,
            main_chart_config=main_chart_config,
            model_line_config=model_line_config,
            probe_line_config=probe_line_config,
            vertical_bar_charts_config=vertical_bar_charts_config,
            horizontal_bar_charts_config=horizontal_bar_charts_config,
            time_line_config=time_line_config,
            chart_style=chart_style,
        )
    else:
        chart = probe_only_dashboard(
            predictor=predictor,
            x_axis_title=x_axis_title,
            y_axis_title=y_axis_title,
            main_chart_config=main_chart_config,
            vertical_bar_charts_config=vertical_bar_charts_config,
            horizontal_bar_charts_config=horizontal_bar_charts_config,
            time_line_config=time_line_config,
            chart_style=chart_style,
        )

    vis_probe = "id" + uuid.uuid4().hex
    new_index_probe_id = "id" + uuid.uuid4().hex
    old_index_probe_id = "id" + uuid.uuid4().hex
    left_shift = "145px" if fitted_model else "45px"
    html_chart = f"""
        <!DOCTYPE html>
        <html>
        <head>
          <script src="https://cdn.jsdelivr.net/npm/vega@{alt.VEGA_VERSION}"></script>
          <script src="https://cdn.jsdelivr.net/npm/vega-lite@{alt.VEGALITE_VERSION}"></script>
          <script src="https://cdn.jsdelivr.net/npm/vega-embed@{alt.VEGAEMBED_VERSION}"></script>
        </head>
        <body>

        <div class="container">
          <div class="row">
            <div>
            <div id={vis_probe}></div>
            </div>
            <div style="position:absolute;left:{left_shift};top:380px;width: -webkit-fill-available;">
            <div id={new_index_probe_id}>
              <div id={old_index_probe_id}></div>
            </div>
            <hr/>
            <h1 style="text-align:center"> Interactive filters </h1>
            </div>
          </div>
        </div>

        <script type="text/javascript">
        vegaEmbed('#{vis_probe}', {chart.to_json(indent=None)}).then(function(result) {{
            const sliders = document.getElementsByClassName('vega-bindings');
            const newparent = document.getElementById('{new_index_probe_id}');
            const oldchild = document.getElementById('{old_index_probe_id}');
            for (var i = 0; i < sliders.length; i++) {{
                if (sliders[i].parentElement.parentElement.id == '{vis_probe}') {{
                    var index_slider = sliders[i]
                    }}
                }}
            newparent.replaceChild(index_slider, oldchild);
            }}).catch(console.error);
        </script>
        </body>
        </html>
        """
    if save_path:
        save_html(
            obj=html_chart,
            filename=save_path,
        )
    else:
        display(HTML(html_chart))

normalized_probe_dashboard

normalized_probe_dashboard(
    probe: BaseProbe,
    fitted_model: BaseModel,
    care_site_level: List[str] = None,
    save_path: str = None,
    x_axis_title: str = None,
    y_axis_title: str = None,
    main_chart_config: Dict[str, str] = None,
    model_line_config: Dict[str, str] = None,
    error_line_config: Dict[str, str] = None,
    probe_line_config: Dict[str, str] = None,
    estimates_selections: Dict[str, str] = None,
    estimates_filters: Dict[str, str] = None,
    vertical_bar_charts_config: Dict[str, str] = None,
    horizontal_bar_charts_config: Dict[str, str] = None,
    time_line_config: Dict[str, str] = None,
    chart_style: Dict[str, float] = None,
    indexes_to_remove: List[str] = ["care_site_level"],
    **kwargs
)

Displays an interactive chart with:

  • On the top, the aggregated normalized completeness predictor \(\frac{c(\Delta t)}{c_0}\) over normalized time \(\Delta t = t - t_0\). It represents the overall deviation from the Model.
  • On the bottom, interactive filters including all the columns in the Probe (such as time, care site, number of visits...etc.) and all the estimates (coefficients and metrics) in the Model.

Is is possible to save the chart in HTML with the "save_path" optional input.

PARAMETER DESCRIPTION
probe

Class describing the completeness predictor \(c(t)\)

TYPE: BaseProbe

fitted_model

Model fitted to the probe

TYPE: BaseModel

care_site_level

EXAMPLE: ["Hospital"], ["Hôpital", "UF"] or ["UF", "UH"]

TYPE: List[str] DEFAULT: None

save_path

Folder path where to save the chart in HTML format.

TYPE: str DEFAULT: None

x_axis_title

Label name for the x axis.

TYPE: str DEFAULT: None

y_axis_title

Label name for the y axis.

TYPE: str DEFAULT: None

main_chart_config

If not None, configuration used to construct the top main chart.

TYPE: Dict[str, str] DEFAULT: None

model_line_config

If not None, configuration used to construct the model line.

TYPE: Dict[str, str] DEFAULT: None

error_line_config

If not None, configuration used to construct the error line.

TYPE: Dict[str, str] DEFAULT: None

probe_line_config

If not None, configuration used to construct the probe line.

TYPE: Dict[str, str] DEFAULT: None

estimates_selections

If not None, configuration used to construct the estimates selections.

TYPE: Dict[str, str] DEFAULT: None

estimates_filters

If not None, configuration used to construct the estimates filters.

TYPE: Dict[str, str] DEFAULT: None

vertical_bar_charts_config

If not None, configuration used to construct the vertical bar charts.

TYPE: Dict[str, str] DEFAULT: None

horizontal_bar_charts_config

If not None, configuration used to construct the horizontal bar charts.

TYPE: Dict[str, str] DEFAULT: None

time_line_config

If not None, configuration used to construct the time line.

TYPE: Dict[str, str] DEFAULT: None

chart_style

If not None, configuration used to configure the chart style. EXAMPLE: {"labelFontSize": 13, "titleFontSize": 14}

TYPE: Dict[str, float] DEFAULT: None

indexes_to_remove

indexes to remove from the groupby selection.

TYPE: List[str] DEFAULT: ['care_site_level']

Source code in edsteva/viz/dashboards/normalized_probe/normalized_probe.py
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
def normalized_probe_dashboard(
    probe: BaseProbe,
    fitted_model: BaseModel,
    care_site_level: List[str] = None,
    save_path: str = None,
    x_axis_title: str = None,
    y_axis_title: str = None,
    main_chart_config: Dict[str, str] = None,
    model_line_config: Dict[str, str] = None,
    error_line_config: Dict[str, str] = None,
    probe_line_config: Dict[str, str] = None,
    estimates_selections: Dict[str, str] = None,
    estimates_filters: Dict[str, str] = None,
    vertical_bar_charts_config: Dict[str, str] = None,
    horizontal_bar_charts_config: Dict[str, str] = None,
    time_line_config: Dict[str, str] = None,
    chart_style: Dict[str, float] = None,
    indexes_to_remove: List[str] = ["care_site_level"],
    **kwargs,
):
    r"""Displays an interactive chart with:

    - On the top, the aggregated normalized completeness predictor $\frac{c(\Delta t)}{c_0}$ over normalized time $\Delta t = t - t_0$. It represents the overall deviation from the Model.
    - On the bottom, interactive filters including all the columns in the [Probe][probe] (such as time, care site, number of visits...etc.) and all the estimates (coefficients and metrics) in the [Model][model].

    Is is possible to save the chart in HTML with the "save_path" optional input.

    Parameters
    ----------
    probe : BaseProbe
        Class describing the completeness predictor $c(t)$
    fitted_model : BaseModel
        Model fitted to the probe
    care_site_level : List[str], optional
        **EXAMPLE**: `["Hospital"]`, `["Hôpital", "UF"]` or `["UF", "UH"]`
    save_path : str, optional
        Folder path where to save the chart in HTML format.
    x_axis_title: str, optional,
        Label name for the x axis.
    y_axis_title: str, optional,
        Label name for the y axis.
    main_chart_config: Dict[str, str], optional
        If not None, configuration used to construct the top main chart.
    model_line_config: Dict[str, str], optional
        If not None, configuration used to construct the model line.
    error_line_config: Dict[str, str], optional
        If not None, configuration used to construct the error line.
    probe_line_config: Dict[str, str], optional
        If not None, configuration used to construct the probe line.
    estimates_selections: Dict[str, str], optional
        If not None, configuration used to construct the estimates selections.
    estimates_filters: Dict[str, str], optional
        If not None, configuration used to construct the estimates filters.
    vertical_bar_charts_config: Dict[str, str], optional
        If not None, configuration used to construct the vertical bar charts.
    horizontal_bar_charts_config: Dict[str, str], optional
        If not None, configuration used to construct the horizontal bar charts.
    time_line_config: Dict[str, str], optional
        If not None, configuration used to construct the time line.
    chart_style: Dict[str, float], optional
        If not None, configuration used to configure the chart style.
        **EXAMPLE**: `{"labelFontSize": 13, "titleFontSize": 14}`
    indexes_to_remove: List[str], optional
        indexes to remove from the groupby selection.
    """
    alt.data_transformers.disable_max_rows()

    # Pre-processing
    predictor = probe.predictor.copy()
    estimates = fitted_model.estimates.copy()
    predictor_metrics = probe._metrics.copy()
    indexes = get_indexes_to_groupby(
        predictor_columns=predictor.columns,
        predictor_metrics=predictor_metrics,
        indexes_to_remove=indexes_to_remove,
    )
    predictor = predictor.merge(estimates, on=probe._index)
    predictor["normalized_date"] = month_diff(
        predictor["date"], predictor["t_0"]
    ).astype(int)
    for estimate in fitted_model._coefs + fitted_model._metrics:
        if pd.api.types.is_datetime64_any_dtype(predictor[estimate]):
            predictor[estimate] = predictor[estimate].dt.strftime("%Y-%m")
    predictor["normalized_c"] = predictor["c"].where(
        (predictor["normalized_date"] < 0) | (predictor["c_0"] == 0),
        predictor["c"] / predictor["c_0"],
    )
    predictor["model"] = 1
    predictor["model"] = predictor["model"].where(predictor["normalized_date"] >= 0, 0)
    predictor = filter_data(data=predictor, care_site_level=care_site_level, **kwargs)

    # Get viz config
    probe_config = deepcopy(probe.get_viz_config("normalized_probe_dashboard"))
    model_config = deepcopy(
        fitted_model.get_viz_config("normalized_probe_dashboard", predictor=predictor)
    )
    if main_chart_config is None:
        main_chart_config = probe_config["main_chart"]
    if time_line_config is None:
        time_line_config = probe_config["time_line"]
    if vertical_bar_charts_config is None:
        vertical_bar_charts_config = probe_config["vertical_bar_charts"]
        vertical_bar_charts_config["y"] = (
            vertical_bar_charts_config["y"] + model_config["extra_vertical_bar_charts"]
        )
    if horizontal_bar_charts_config is None:
        horizontal_bar_charts_config = probe_config["horizontal_bar_charts"]
        horizontal_bar_charts_config["x"] = (
            horizontal_bar_charts_config["x"]
            + model_config["extra_horizontal_bar_charts"]
        )
    if chart_style is None:
        chart_style = probe_config["chart_style"]
    if probe_line_config is None:
        probe_line_config = model_config["probe_line"]
    if model_line_config is None:
        model_line_config = model_config["model_line"]
    if error_line_config is None:
        error_line_config = model_config["error_line"]
    if estimates_selections is None:
        estimates_selections = model_config["estimates_selections"]
    if estimates_filters is None:
        estimates_filters = model_config["estimates_filters"]

    # Viz
    predictor["legend_model"] = (
        model_line_config.get("legend_title")
        if model_line_config.get("legend_title")
        else type(fitted_model).__name__
    )
    predictor["legend_predictor"] = probe_line_config["legend_title"]
    predictor["legend_error_band"] = error_line_config["legend_title"]
    base = alt.Chart(predictor)
    time_line, time_selection = generate_time_line(
        base=base,
        time_line_config=time_line_config,
    )

    horizontal_bar_charts, y_variables_selections = generate_horizontal_bar_charts(
        base=base,
        horizontal_bar_charts_config=horizontal_bar_charts_config,
        predictor=predictor,
    )
    vertical_bar_charts, x_variables_selections = generate_vertical_bar_charts(
        base=base,
        vertical_bar_charts_config=vertical_bar_charts_config,
        predictor=predictor,
    )
    selections = dict(
        date=time_selection,
        **y_variables_selections,
        **x_variables_selections,
    )
    selection_charts = dict(
        horizontal_bar_charts,
        **vertical_bar_charts,
    )
    base = add_interactive_selection(
        base=base,
        selection_charts=selection_charts,
        selections=selections,
    )
    base = add_estimates_filters(
        base=base,
        selection_charts=selection_charts,
        estimates_filters=estimates_filters,
    )
    index_selection, index_fields = create_groupby_selection(
        indexes=indexes,
        predictor=predictor,
    )
    main_chart = generate_main_chart(
        base=base,
        main_chart_config=main_chart_config,
        index_selection=index_selection,
        index_fields=index_fields,
        x_axis_title=x_axis_title,
        y_axis_title=y_axis_title,
    )
    probe_line = generate_probe_line(
        main_chart=main_chart, probe_line_config=probe_line_config
    )
    error_line = generate_error_line(
        main_chart=main_chart, error_line_config=error_line_config
    )
    model_line = generate_model_line(
        main_chart=main_chart, model_line_config=model_line_config
    )

    main_chart = probe_line + error_line + model_line
    if index_selection:
        main_chart = main_chart.add_params(index_selection)
    chart = concatenate_charts(
        main_chart=main_chart,
        time_line=time_line,
        horizontal_bar_charts=horizontal_bar_charts,
        vertical_bar_charts=vertical_bar_charts,
        spacing=0,
    )
    chart = configure_style(chart=chart, chart_style=chart_style)
    for estimate_selection in estimates_selections:
        chart = chart.add_params(estimate_selection)

    vis_threshold = "id" + uuid.uuid4().hex
    new_sliders_threshold_id = "id" + uuid.uuid4().hex
    old_sliders_threshold_id = "id" + uuid.uuid4().hex
    new_index_threshold_id = "id" + uuid.uuid4().hex
    old_index_threshold_id = "id" + uuid.uuid4().hex
    html_chart = f"""
        <!DOCTYPE html>
        <html>
        <head>
          <script src="https://cdn.jsdelivr.net/npm/vega@{alt.VEGA_VERSION}"></script>
          <script src="https://cdn.jsdelivr.net/npm/vega-lite@{alt.VEGALITE_VERSION}"></script>
          <script src="https://cdn.jsdelivr.net/npm/vega-embed@{alt.VEGAEMBED_VERSION}"></script>
        </head>
        <body>

        <div class="container">
          <div class="row">
            <div>
            <div id={vis_threshold}></div>
            </div>
            <div style="position:absolute;left:1000px;top:540px;width: -webkit-fill-available;">
            <div id={new_sliders_threshold_id}>
              <div id={old_sliders_threshold_id}></div>
            </div>
            </div>
            <div style="position:absolute;left:45px;top:410px;width: -webkit-fill-available;">
            <div id={new_index_threshold_id}>
              <div id={old_index_threshold_id}></div>
            </div>
            <hr/>
            <h1 style="text-align:center"> Interactive filters </h1>
            </div>
          </div>
        </div>

        <script type="text/javascript">
        vegaEmbed('#{vis_threshold}', {chart.to_json(indent=None)}).then(function(result) {{
            const sliders = document.getElementsByClassName('vega-bindings');
            const newestimate = document.getElementById('{new_sliders_threshold_id}');
            const oldestimate = document.getElementById('{old_sliders_threshold_id}');
            const newparent = document.getElementById('{new_index_threshold_id}');
            const oldchild = document.getElementById('{old_index_threshold_id}');
            for (var i = 0; i < sliders.length; i++) {{
                if (sliders[i].parentElement.parentElement.id == '{vis_threshold}') {{
                    var estimate_slider = sliders[i]
                    var index_slider = estimate_slider.querySelectorAll(".vega-bind")
                    }}
                }}
            newestimate.replaceChild(estimate_slider, oldestimate);
            for (var i = 0; i < index_slider.length; i++) {{
                if (index_slider[i].firstChild.innerHTML == "Group by: ") {{
                    var index_color = index_slider[i]}}
                }}
            newparent.replaceChild(index_color, oldchild);
            }}).catch(console.error);
        </script>
        </body>
        </html>
        """
    display(HTML(html_chart))
    if save_path:
        save_html(
            obj=html_chart,
            filename=save_path,
        )