26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166 | def compute_completeness_predictor_per_visit(
self,
data: Data,
start_date: datetime,
end_date: datetime,
care_site_levels: Union[bool, str, List[str]],
stay_types: Union[bool, str, Dict[str, str]],
care_site_ids: List[int],
care_site_short_names: List[str],
care_site_specialties: Union[bool, List[str]],
care_sites_sets: Union[str, Dict[str, str]],
specialties_sets: Union[str, Dict[str, str]],
length_of_stays: List[float],
age_ranges: List[int],
gender_source_values: Union[bool, str, Dict[str, str]],
condition_types: Union[bool, str, Dict[str, str]],
provenance_sources: Union[bool, str, Dict[str, str]],
stay_sources: Union[bool, str, Dict[str, str]],
drg_sources: Union[bool, str, Dict[str, str]],
**kwargs
):
r"""Script to be used by [``compute()``][edsteva.probes.base.BaseProbe.compute]
The ``per_visit`` algorithm computes $c_(t)$ the availability of administrative data related to visits for each care site according to time:
$$
c(t) = \frac{n_{visit}(t)}{n_{max}}
$$
Where $n_{visit}(t)$ is the number of administrative stays, $t$ is the month and $n_{max} = \max_{t}(n_{visit}(t))$.
"""
self._metrics = ["c", "n_visit"]
check_tables(
data=data,
required_tables=[
"visit_occurrence",
"care_site",
"fact_relationship",
],
)
care_site_relationship = prepare_care_site_relationship(
data=data,
)
self.care_site_relationship = care_site_relationship
person = (
prepare_person(data, gender_source_values)
if (age_ranges or gender_source_values)
else None
)
cost = prepare_cost(data, drg_sources) if drg_sources else None
visit_occurrence = prepare_visit_occurrence(
data=data,
start_date=start_date,
end_date=end_date,
stay_types=stay_types,
length_of_stays=length_of_stays,
stay_sources=stay_sources,
provenance_sources=provenance_sources,
cost=cost,
person=person,
age_ranges=age_ranges,
)
if condition_types:
check_tables(
data=data,
required_tables=[
"condition_occurrence",
],
)
conditions = prepare_condition_occurrence(
data,
extra_data=None,
visit_occurrence=None,
source_systems="ORBIS",
diag_types=None,
condition_types=condition_types,
start_date=start_date,
end_date=end_date,
)[["visit_occurrence_id", "condition_type"]].drop_duplicates()
visit_occurrence = visit_occurrence.merge(conditions, on="visit_occurrence_id")
care_site = prepare_care_site(
data=data,
care_site_ids=care_site_ids,
care_site_short_names=care_site_short_names,
care_site_specialties=care_site_specialties,
care_site_relationship=care_site_relationship,
specialties_sets=specialties_sets,
care_sites_sets=care_sites_sets,
)
hospital_visit = get_hospital_visit(
visit_occurrence,
care_site,
)
hospital_name = CARE_SITE_LEVEL_NAMES["Hospital"]
visit_predictor_by_level = {hospital_name: hospital_visit}
if not hospital_only(care_site_levels=care_site_levels):
visit_detail = prepare_visit_detail(data, start_date, end_date)
uf_name = CARE_SITE_LEVEL_NAMES["UF"]
uf_visit = get_uf_visit(
visit_occurrence,
visit_detail,
care_site,
)
visit_predictor_by_level[uf_name] = uf_visit
uc_name = CARE_SITE_LEVEL_NAMES["UC"]
uc_visit = get_uc_visit(
visit_occurrence,
visit_detail,
care_site,
)
visit_predictor_by_level[uc_name] = uc_visit
uh_name = CARE_SITE_LEVEL_NAMES["UH"]
uh_visit = get_uh_visit(
visit_occurrence,
visit_detail,
care_site,
)
visit_predictor_by_level[uh_name] = uh_visit
pole_name = CARE_SITE_LEVEL_NAMES["Pole"]
pole_visit = get_pole_visit(
uf_visit,
care_site,
care_site_relationship,
)
visit_predictor_by_level[pole_name] = pole_visit
visit_predictor = concatenate_predictor_by_level(
predictor_by_level=visit_predictor_by_level,
care_site_levels=care_site_levels,
)
return compute_completeness(self, visit_predictor)
|