Skip to content

edsteva.probes.visit.completeness_predictors.per_visit

compute_completeness_predictor_per_visit

compute_completeness_predictor_per_visit(
    self,
    data: Data,
    start_date: datetime,
    end_date: datetime,
    care_site_levels: Union[bool, str, List[str]],
    stay_types: Union[bool, str, Dict[str, str]],
    care_site_ids: List[int],
    care_site_short_names: List[str],
    care_site_specialties: Union[bool, List[str]],
    care_sites_sets: Union[str, Dict[str, str]],
    specialties_sets: Union[str, Dict[str, str]],
    length_of_stays: List[float],
    age_ranges: List[int],
    gender_source_values: Union[bool, str, Dict[str, str]],
    condition_types: Union[bool, str, Dict[str, str]],
    provenance_sources: Union[bool, str, Dict[str, str]],
    stay_sources: Union[bool, str, Dict[str, str]],
    drg_sources: Union[bool, str, Dict[str, str]],
    **kwargs
)

Script to be used by compute()

The per_visit algorithm computes \(c_(t)\) the availability of administrative data related to visits for each care site according to time:

\[ c(t) = \frac{n_{visit}(t)}{n_{max}} \]

Where \(n_{visit}(t)\) is the number of administrative stays, \(t\) is the month and \(n_{max} = \max_{t}(n_{visit}(t))\).

Source code in edsteva/probes/visit/completeness_predictors/per_visit.py
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def compute_completeness_predictor_per_visit(
    self,
    data: Data,
    start_date: datetime,
    end_date: datetime,
    care_site_levels: Union[bool, str, List[str]],
    stay_types: Union[bool, str, Dict[str, str]],
    care_site_ids: List[int],
    care_site_short_names: List[str],
    care_site_specialties: Union[bool, List[str]],
    care_sites_sets: Union[str, Dict[str, str]],
    specialties_sets: Union[str, Dict[str, str]],
    length_of_stays: List[float],
    age_ranges: List[int],
    gender_source_values: Union[bool, str, Dict[str, str]],
    condition_types: Union[bool, str, Dict[str, str]],
    provenance_sources: Union[bool, str, Dict[str, str]],
    stay_sources: Union[bool, str, Dict[str, str]],
    drg_sources: Union[bool, str, Dict[str, str]],
    **kwargs
):
    r"""Script to be used by [``compute()``][edsteva.probes.base.BaseProbe.compute]

    The ``per_visit`` algorithm computes $c_(t)$ the availability of administrative data related to visits for each care site according to time:

    $$
    c(t) = \frac{n_{visit}(t)}{n_{max}}
    $$

    Where $n_{visit}(t)$ is the number of administrative stays, $t$ is the month and $n_{max} = \max_{t}(n_{visit}(t))$.
    """
    self._metrics = ["c", "n_visit"]
    check_tables(
        data=data,
        required_tables=[
            "visit_occurrence",
            "care_site",
            "fact_relationship",
        ],
    )
    care_site_relationship = prepare_care_site_relationship(
        data=data,
    )
    self.care_site_relationship = care_site_relationship
    person = (
        prepare_person(data, gender_source_values)
        if (age_ranges or gender_source_values)
        else None
    )
    cost = prepare_cost(data, drg_sources) if drg_sources else None

    visit_occurrence = prepare_visit_occurrence(
        data=data,
        start_date=start_date,
        end_date=end_date,
        stay_types=stay_types,
        length_of_stays=length_of_stays,
        stay_sources=stay_sources,
        provenance_sources=provenance_sources,
        cost=cost,
        person=person,
        age_ranges=age_ranges,
    )

    if condition_types:
        check_tables(
            data=data,
            required_tables=[
                "condition_occurrence",
            ],
        )
        conditions = prepare_condition_occurrence(
            data,
            extra_data=None,
            visit_occurrence=None,
            source_systems="ORBIS",
            diag_types=None,
            condition_types=condition_types,
            start_date=start_date,
            end_date=end_date,
        )[["visit_occurrence_id", "condition_type"]].drop_duplicates()
        visit_occurrence = visit_occurrence.merge(conditions, on="visit_occurrence_id")

    care_site = prepare_care_site(
        data=data,
        care_site_ids=care_site_ids,
        care_site_short_names=care_site_short_names,
        care_site_specialties=care_site_specialties,
        care_site_relationship=care_site_relationship,
        specialties_sets=specialties_sets,
        care_sites_sets=care_sites_sets,
    )

    hospital_visit = get_hospital_visit(
        visit_occurrence,
        care_site,
    )

    hospital_name = CARE_SITE_LEVEL_NAMES["Hospital"]
    visit_predictor_by_level = {hospital_name: hospital_visit}
    if not hospital_only(care_site_levels=care_site_levels):
        visit_detail = prepare_visit_detail(data, start_date, end_date)

        uf_name = CARE_SITE_LEVEL_NAMES["UF"]
        uf_visit = get_uf_visit(
            visit_occurrence,
            visit_detail,
            care_site,
        )
        visit_predictor_by_level[uf_name] = uf_visit

        uc_name = CARE_SITE_LEVEL_NAMES["UC"]
        uc_visit = get_uc_visit(
            visit_occurrence,
            visit_detail,
            care_site,
        )
        visit_predictor_by_level[uc_name] = uc_visit

        uh_name = CARE_SITE_LEVEL_NAMES["UH"]
        uh_visit = get_uh_visit(
            visit_occurrence,
            visit_detail,
            care_site,
        )
        visit_predictor_by_level[uh_name] = uh_visit

        pole_name = CARE_SITE_LEVEL_NAMES["Pole"]
        pole_visit = get_pole_visit(
            uf_visit,
            care_site,
            care_site_relationship,
        )
        visit_predictor_by_level[pole_name] = pole_visit

    visit_predictor = concatenate_predictor_by_level(
        predictor_by_level=visit_predictor_by_level,
        care_site_levels=care_site_levels,
    )

    return compute_completeness(self, visit_predictor)