Skip to content

edsteva.probes.condition.completeness_predictors.per_condition

compute_completeness_predictor_per_condition

compute_completeness_predictor_per_condition(
    self,
    data: Data,
    start_date: datetime,
    end_date: datetime,
    care_site_levels: Union[bool, str, List[str]],
    stay_types: Union[bool, str, Dict[str, str]],
    care_site_ids: List[int],
    extra_data: Data,
    care_site_short_names: List[str],
    care_site_specialties: Union[bool, List[str]],
    care_sites_sets: Union[str, Dict[str, str]],
    specialties_sets: Union[str, Dict[str, str]],
    diag_types: Union[bool, str, Dict[str, str]],
    condition_types: Union[bool, str, Dict[str, str]],
    condition_concept_codes: Union[bool, List[str]],
    source_systems: Union[bool, List[str]],
    length_of_stays: List[float],
    age_ranges: List[int],
    gender_source_values: Union[bool, str, Dict[str, str]],
    provenance_sources: Union[bool, str, Dict[str, str]],
    stay_sources: Union[bool, str, Dict[str, str]],
    drg_sources: Union[bool, str, Dict[str, str]],
    **kwargs
)

Script to be used by compute()

The per_condition algorithm computes \(c_(t)\) the availability of claim data as follow:

\[ c(t) = \frac{n_{condition}(t)}{n_{max}} \]

Where \(n_{condition}(t)\) is the number of claim codes (e.g. ICD-10) recorded, \(t\) is the month and \(n_{max} = \max_{t}(n_{condition}(t))\).

Source code in edsteva/probes/condition/completeness_predictors/per_condition.py
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def compute_completeness_predictor_per_condition(
    self,
    data: Data,
    start_date: datetime,
    end_date: datetime,
    care_site_levels: Union[bool, str, List[str]],
    stay_types: Union[bool, str, Dict[str, str]],
    care_site_ids: List[int],
    extra_data: Data,
    care_site_short_names: List[str],
    care_site_specialties: Union[bool, List[str]],
    care_sites_sets: Union[str, Dict[str, str]],
    specialties_sets: Union[str, Dict[str, str]],
    diag_types: Union[bool, str, Dict[str, str]],
    condition_types: Union[bool, str, Dict[str, str]],
    condition_concept_codes: Union[bool, List[str]],
    source_systems: Union[bool, List[str]],
    length_of_stays: List[float],
    age_ranges: List[int],
    gender_source_values: Union[bool, str, Dict[str, str]],
    provenance_sources: Union[bool, str, Dict[str, str]],
    stay_sources: Union[bool, str, Dict[str, str]],
    drg_sources: Union[bool, str, Dict[str, str]],
    **kwargs
):
    r"""Script to be used by [``compute()``][edsteva.probes.base.BaseProbe.compute]

    The ``per_condition`` algorithm computes $c_(t)$ the availability of claim data as follow:

    $$
    c(t) = \frac{n_{condition}(t)}{n_{max}}
    $$

    Where $n_{condition}(t)$ is the number of claim codes (e.g. ICD-10) recorded, $t$ is the month and $n_{max} = \max_{t}(n_{condition}(t))$.
    """

    self._metrics = ["c", "n_condition"]
    check_tables(
        data=data,
        required_tables=[
            "condition_occurrence",
            "visit_occurrence",
            "care_site",
            "fact_relationship",
        ],
    )
    care_site_relationship = prepare_care_site_relationship(
        data=data,
    )
    self.care_site_relationship = care_site_relationship
    person = (
        prepare_person(data, gender_source_values)
        if (age_ranges or gender_source_values)
        else None
    )
    cost = prepare_cost(data, drg_sources) if drg_sources else None

    visit_occurrence = prepare_visit_occurrence(
        data=data,
        stay_types=stay_types,
        length_of_stays=length_of_stays,
        provenance_sources=provenance_sources,
        stay_sources=stay_sources,
        cost=cost,
        person=person,
        age_ranges=age_ranges,
    ).drop(columns="date")

    condition_occurrence = prepare_condition_occurrence(
        data=data,
        extra_data=extra_data,
        visit_occurrence=visit_occurrence,
        source_systems=source_systems,
        diag_types=diag_types,
        condition_types=condition_types,
        condition_concept_codes=condition_concept_codes,
        start_date=start_date,
        end_date=end_date,
    )

    care_site = prepare_care_site(
        data=data,
        care_site_ids=care_site_ids,
        care_site_short_names=care_site_short_names,
        care_site_relationship=care_site_relationship,
        care_site_specialties=care_site_specialties,
        care_sites_sets=care_sites_sets,
        specialties_sets=specialties_sets,
    )

    hospital_condition = get_hospital_condition(
        condition_occurrence,
        visit_occurrence,
        care_site,
    )
    hospital_name = CARE_SITE_LEVEL_NAMES["Hospital"]
    condition_predictor_by_level = {hospital_name: hospital_condition}

    # UF selection
    if not hospital_only(care_site_levels=care_site_levels):
        visit_detail = prepare_visit_detail(
            data=data,
            start_date=start_date,
            end_date=end_date,
        )

        uf_condition = get_uf_condition(
            condition_occurrence=condition_occurrence,
            visit_occurrence=visit_occurrence,
            visit_detail=visit_detail,
            care_site=care_site,
        )
        uf_name = CARE_SITE_LEVEL_NAMES["UF"]
        condition_predictor_by_level[uf_name] = uf_condition

        pole_condition = get_pole_condition(
            uf_condition, care_site, care_site_relationship
        )
        pole_name = CARE_SITE_LEVEL_NAMES["Pole"]
        condition_predictor_by_level[pole_name] = pole_condition

    condition_predictor = concatenate_predictor_by_level(
        predictor_by_level=condition_predictor_by_level,
        care_site_levels=care_site_levels,
    )

    return compute_completeness(self, condition_predictor)