edsteva.probes.condition.completeness_predictors.per_condition
compute_completeness_predictor_per_condition
compute_completeness_predictor_per_condition(
self,
data: Data,
start_date: datetime,
end_date: datetime,
care_site_levels: Union[bool, str, List[str]],
stay_types: Union[bool, str, Dict[str, str]],
care_site_ids: List[int],
extra_data: Data,
care_site_short_names: List[str],
care_site_specialties: Union[bool, List[str]],
care_sites_sets: Union[str, Dict[str, str]],
specialties_sets: Union[str, Dict[str, str]],
diag_types: Union[bool, str, Dict[str, str]],
condition_types: Union[bool, str, Dict[str, str]],
condition_concept_codes: Union[bool, List[str]],
source_systems: Union[bool, List[str]],
length_of_stays: List[float],
age_ranges: List[int],
gender_source_values: Union[bool, str, Dict[str, str]],
provenance_sources: Union[bool, str, Dict[str, str]],
stay_sources: Union[bool, str, Dict[str, str]],
drg_sources: Union[bool, str, Dict[str, str]],
**kwargs
)
Script to be used by compute()
The per_condition
algorithm computes \(c_(t)\) the availability of claim data as follow:
\[
c(t) = \frac{n_{condition}(t)}{n_{max}}
\]
Where \(n_{condition}(t)\) is the number of claim codes (e.g. ICD-10) recorded, \(t\) is the month and \(n_{max} = \max_{t}(n_{condition}(t))\).
Source code in edsteva/probes/condition/completeness_predictors/per_condition.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|