edsteva.models.step_function.algos.loss_minimization
loss_minimization
loss_minimization(
predictor: pd.DataFrame,
index: List[str],
x_col: str = "date",
y_col: str = "c",
loss_function: Callable = l2_loss,
) -> pd.DataFrame
Computes the threshold \(t_0\) of a predictor \(c(t)\) by minimizing the following loss function:
Where the loss function \(\mathcal{l}\) is by default the L2 distance and the estimated completeness \(c_0\) is the mean completeness after \(t_0\).
PARAMETER | DESCRIPTION |
---|---|
predictor |
\(c(t)\) computed in the Probe
TYPE:
|
index |
Variable from which data is grouped EXAMPLE:
TYPE:
|
x_col |
Column name for the time variable \(t\)
TYPE:
|
y_col |
Column name for the completeness variable \(c(t)\)
TYPE:
|
loss_function |
The loss function \(\mathcal{L}\)
TYPE:
|
Source code in edsteva/models/step_function/algos/loss_minimization.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|