edsteva.models.base
BaseModel
Base class for Models
ATTRIBUTE | DESCRIPTION |
---|---|
_coefs |
The list of the Model coefficients
TYPE:
|
estimates |
Available with the
TYPE:
|
_metrics |
Available with the The list of computed metrics if any
TYPE:
|
params |
Available with the Ths list of extra keyword parameters used.
TYPE:
|
Source code in edsteva/models/base.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
is_computed_estimates
is_computed_estimates() -> None
Raises an error if the Probe has not been fitted properly
Source code in edsteva/models/base.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
fit_process
abstractmethod
fit_process(
predictor: pd.DataFrame,
index: List[str] = None,
**kwargs
)
Fit the Probe in order to obtain estimates
Source code in edsteva/models/base.py
66 67 68 69 70 71 72 73 |
|
predict_process
abstractmethod
predict_process(prediction: pd.DataFrame, **kwargs)
Compute the predicted Probe
Source code in edsteva/models/base.py
75 76 77 78 79 80 81 |
|
fit
fit(
probe: BaseProbe,
metric_functions: List[str] = None,
start_date: str = None,
end_date: str = None,
with_cache: bool = True,
**kwargs
) -> None
Fit the model to the probe instance
PARAMETER | DESCRIPTION |
---|---|
probe |
Target variable to be fitted
TYPE:
|
metric_functions |
Metrics to apply on the fitted Probe. By default it will apply the default metric specified in the model. EXAMPLE:
TYPE:
|
start_date |
EXAMPLE:
TYPE:
|
end_date |
EXAMPLE:
TYPE:
|
Examples:
from edsteva.models.step_function import StepFunction
step_function_model = StepFunction()
step_function_model.fit(probe)
step_function_model.estimates.head()
care_site_level | care_site_id | stay_type | t_0 | c_0 | error |
---|---|---|---|---|---|
Unité Fonctionnelle (UF) | 8312056386 | 'Urg_Hospit' | 2019-05-01 | 0.397 | 0.040 |
Unité Fonctionnelle (UF) | 8312056386 | 'All' | 2011-04-01 | 0.583 | 0.028 |
Pôle/DMU | 8312027648 | 'Urg_Hospit' | 2021-03-01 | 0.677 | 0.022 |
Pôle/DMU | 8312027648 | 'All' | 2018-08-01 | 0.764 | 0.014 |
Hôpital | 8312022130 | 'Urg_Hospit' | 2022-02-01 | 0.652 | 0.027 |
Source code in edsteva/models/base.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
reset_estimates
reset_estimates() -> None
Reset the estimates to its initial state
Source code in edsteva/models/base.py
165 166 167 168 169 |
|
cache_estimates
cache_estimates() -> None
Cache the predictor
Source code in edsteva/models/base.py
171 172 173 174 175 176 177 178 |
|
predict
predict(probe: BaseProbe) -> pd.DataFrame
Computes the predicted probe by using the estimates
PARAMETER | DESCRIPTION |
---|---|
probe |
Target variable to be predicted
TYPE:
|
Examples:
from edsteva.models.step_function import StepFunction
step_function_model.predict(visit).head()
care_site_level | care_site_id | stay_type | date | n_visit | c | c_fit |
---|---|---|---|---|---|---|
Unité Fonctionnelle (UF) | 8312056386 | 'Urg_Hospit' | 2019-05-01 | 233.0 | 0.841 | 0.758 |
Unité Fonctionnelle (UF) | 8312056386 | 'All' | 2021-04-01 | 393.0 | 0.640 | 0.758 |
Pôle/DMU | 8312027648 | 'Urg_Hospit' | 2011-03-01 | 204.0 | 0.497 | 0 |
Pôle/DMU | 8312027648 | 'All' | 2018-08-01 | 22.0 | 0.784 | 0.874 |
Hôpital | 8312022130 | 'Urg_Hospit' | 2022-02-01 | 9746.0 | 0.974 | 0.912 |
Source code in edsteva/models/base.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
|
load
load(path = None) -> None
Loads a Model from local
PARAMETER | DESCRIPTION |
---|---|
path |
EXAMPLE:
TYPE:
|
Examples:
from edsteva.probes import VisitProbe
probe_path = "my_path/visit.pkl"
visit = VisitProbe()
visit.load(path=probe_path)
Source code in edsteva/models/base.py
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
save
save(path: str = None, name: str = None) -> bool
Saves computed Model instance
PARAMETER | DESCRIPTION |
---|---|
path |
EXAMPLE:
TYPE:
|
name |
EXAMPLE:
TYPE:
|
Examples:
from edsteva.probes import VisitProbe
probe_path = "my_path/visit.pkl"
visit = VisitProbe()
visit.compute(data)
visit.save(path=probe_path)
Source code in edsteva/models/base.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
delete
delete(path: str = None) -> bool
Delete the saved Model instance
PARAMETER | DESCRIPTION |
---|---|
path |
EXAMPLE:
TYPE:
|
Source code in edsteva/models/base.py
274 275 276 277 278 279 280 281 282 283 284 285 |
|
is_predictable_probe
is_predictable_probe(
predictor: pd.DataFrame, index: List[str]
) -> pd.DataFrame
Raises an error if the model has not been fitted on the input predictor.
PARAMETER | DESCRIPTION |
---|---|
predictor |
Target DataFrame to be predicted
TYPE:
|
index |
List of the columns given by Probe._index
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
Predictor along with the fitted estimates |
RAISES | DESCRIPTION |
---|---|
Exception
|
Some indexes have no associated estimates, the model must be fitted on an adequate probe |
Source code in edsteva/models/base.py
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|