Skip to content

edsteva.io.synthetic.utils

generate_events_before_t0

generate_events_before_t0(
    generator: np.random.Generator,
    t_start: int,
    t_end: int,
    n_events: int,
    t0: int,
    increase_time: int,
    increase_ratio: float,
)

Generate events before t0 - increase_time / 2

PARAMETER DESCRIPTION
generator

TYPE: np.random.Generator

t_start

Starting date in seconds

TYPE: int

t_end

Ending date in seconds

TYPE: int

n_events

Number of events to generate

TYPE: int

t0

Events deployment date

TYPE: int

increase_time

Events deployment interval in seconds

TYPE: int

increase_ratio

Ratio between events before t0 and events after t0

TYPE: float

RETURNS DESCRIPTION
pd.Series

A series of datetime values representing generated events

Source code in edsteva/io/synthetic/utils.py
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def generate_events_before_t0(
    generator: np.random.Generator,
    t_start: int,
    t_end: int,
    n_events: int,
    t0: int,
    increase_time: int,
    increase_ratio: float,
):
    """Generate events before t0 - increase_time / 2

    Parameters
    ----------
    generator : np.random.Generator
    t_start : int
        Starting date in seconds
    t_end : int
        Ending date in seconds
    n_events : int
        Number of events to generate
    t0 : int
        Events deployment date
    increase_time : int
        Events deployment interval in seconds
    increase_ratio : float
        Ratio between events before t0 and events after t0

    Returns
    -------
    pd.Series
        A series of datetime values representing generated events
    """

    t0_before = t0 - increase_time / 2
    n_before = int(
        (t0_before - t_start)
        * n_events
        / ((t0 - t_start) + increase_ratio * (t_end - t0))
    )

    return pd.to_datetime(
        pd.Series(generator.integers(t_start, t0_before, n_before)),
        unit="s",
    )

generate_events_after_t0

generate_events_after_t0(
    generator: np.random.Generator,
    t_start: int,
    t_end: int,
    n_events: int,
    t0: int,
    increase_time: int,
    increase_ratio: float,
)

Generate events after t0 + increase_time / 2

PARAMETER DESCRIPTION
generator

TYPE: np.random.Generator

t_start

Starting date in seconds

TYPE: int

t_end

Ending date in seconds

TYPE: int

n_events

Number of events to generate

TYPE: int

t0

Events deployment date

TYPE: int

increase_time

Events deployment interval in seconds

TYPE: int

increase_ratio

Ratio between events before t0 and events after t0

TYPE: float

RETURNS DESCRIPTION
pd.Series

A series of datetime values representing generated events

Source code in edsteva/io/synthetic/utils.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
def generate_events_after_t0(
    generator: np.random.Generator,
    t_start: int,
    t_end: int,
    n_events: int,
    t0: int,
    increase_time: int,
    increase_ratio: float,
):
    """Generate events after t0 + increase_time / 2

    Parameters
    ----------
    generator : np.random.Generator
    t_start : int
        Starting date in seconds
    t_end : int
        Ending date in seconds
    n_events : int
        Number of events to generate
    t0 : int
        Events deployment date
    increase_time : int
        Events deployment interval in seconds
    increase_ratio : float
        Ratio between events before t0 and events after t0

    Returns
    -------
    pd.Series
        A series of datetime values representing generated events
    """

    t0_after = t0 + increase_time / 2
    n_after = int(
        increase_ratio
        * (t_end - t0_after)
        * n_events
        / ((t0 - t_start) + increase_ratio * (t_end - t0))
    )

    return pd.to_datetime(
        pd.Series(generator.integers(t0_after, t_end, n_after)),
        unit="s",
    )

generate_events_around_t0

generate_events_around_t0(
    generator: np.random.Generator,
    t_start: int,
    t_end: int,
    n_events: int,
    t0: int,
    increase_time: int,
    increase_ratio: float,
)

Generate events between t0 - increase_time / 2 and t0 + increase_time / 2

PARAMETER DESCRIPTION
generator

TYPE: np.random.Generator

t_start

Starting date in seconds

TYPE: int

t_end

Ending date in seconds

TYPE: int

n_events

Number of events to generate

TYPE: int

t0

Events deployment date

TYPE: int

increase_time

Events deployment interval in seconds

TYPE: int

increase_ratio

Ratio between events before t0 and events after t0

TYPE: float

RETURNS DESCRIPTION
pd.Series

A series of datetime values representing generated events

Source code in edsteva/io/synthetic/utils.py
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def generate_events_around_t0(
    generator: np.random.Generator,
    t_start: int,
    t_end: int,
    n_events: int,
    t0: int,
    increase_time: int,
    increase_ratio: float,
):
    """Generate events between t0 - increase_time / 2 and t0 + increase_time / 2

    Parameters
    ----------
    generator : np.random.Generator
    t_start : int
        Starting date in seconds
    t_end : int
        Ending date in seconds
    n_events : int
        Number of events to generate
    t0 : int
        Events deployment date
    increase_time : int
        Events deployment interval in seconds
    increase_ratio : float
        Ratio between events before t0 and events after t0

    Returns
    -------
    pd.Series
        A series of datetime values representing generated events
    """
    t0_before = t0 - increase_time / 2
    t0_after = t0 + increase_time / 2
    n_middle = int(
        (increase_time / 2)
        * (increase_ratio + 1)
        * n_events
        / ((t0 - t_start) + increase_ratio * (t_end - t0))
    )

    return pd.to_datetime(
        pd.Series(
            generator.triangular(
                left=t0_before, right=t0_after, mode=t0_after, size=n_middle
            )
        ),
        unit="s",
    )

generate_events_around_t1

generate_events_around_t1(
    generator: np.random.Generator,
    t_start: int,
    t_end: int,
    n_events: int,
    t1: int,
    increase_time: int,
    increase_ratio: float,
)

Generate events between t1 - increase_time / 2 and t1 + increase_time / 2

PARAMETER DESCRIPTION
generator

TYPE: np.random.Generator

t_start

Starting date in seconds

TYPE: int

t_end

Ending date in seconds

TYPE: int

n_events

Number of events to generate

TYPE: int

t1

End of events deployment date

TYPE: int

increase_time

End of events deployment interval in seconds

TYPE: int

increase_ratio

Ratio between events before t1 and events after t1

TYPE: float

RETURNS DESCRIPTION
pd.Series

A series of datetime values representing generated events

Source code in edsteva/io/synthetic/utils.py
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
def generate_events_around_t1(
    generator: np.random.Generator,
    t_start: int,
    t_end: int,
    n_events: int,
    t1: int,
    increase_time: int,
    increase_ratio: float,
):
    """Generate events between t1 - increase_time / 2 and t1 + increase_time / 2

    Parameters
    ----------
    generator : np.random.Generator
    t_start : int
        Starting date in seconds
    t_end : int
        Ending date in seconds
    n_events : int
        Number of events to generate
    t1 : int
        End of events deployment date
    increase_time : int
        End of events deployment interval in seconds
    increase_ratio : float
        Ratio between events before t1 and events after t1

    Returns
    -------
    pd.Series
        A series of datetime values representing generated events
    """
    t1_before = t1 - increase_time / 2
    t1_after = t1 + increase_time / 2
    n_middle = int(
        (increase_time / 2)
        * (increase_ratio + 1)
        * n_events
        / ((t1 - t_start) * increase_ratio + (t_end - t1))
    )

    return pd.to_datetime(
        pd.Series(
            generator.triangular(
                left=t1_before, right=t1_after, mode=t1_before, size=n_middle
            )
        ),
        unit="s",
    )

generate_events_after_t1

generate_events_after_t1(
    generator: np.random.Generator,
    t_start: int,
    t_end: int,
    n_events: int,
    t1: int,
    increase_time: int,
    increase_ratio: float,
)

Generate events after t1 + increase_time / 2

PARAMETER DESCRIPTION
generator

TYPE: np.random.Generator

t_start

Starting date in seconds

TYPE: int

t_end

Ending date in seconds

TYPE: int

n_events

Number of events to generate

TYPE: int

t1

End of events deployment date

TYPE: int

increase_time

End of events deployment interval in seconds

TYPE: int

increase_ratio

Ratio between events before t1 and events after t1

TYPE: float

RETURNS DESCRIPTION
pd.Series

A series of datetime values representing generated events

Source code in edsteva/io/synthetic/utils.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
def generate_events_after_t1(
    generator: np.random.Generator,
    t_start: int,
    t_end: int,
    n_events: int,
    t1: int,
    increase_time: int,
    increase_ratio: float,
):
    """Generate events after t1 + increase_time / 2

    Parameters
    ----------
    generator : np.random.Generator
    t_start : int
        Starting date in seconds
    t_end : int
        Ending date in seconds
    n_events : int
        Number of events to generate
    t1 : int
        End of events deployment date
    increase_time : int
        End of events deployment interval in seconds
    increase_ratio : float
        Ratio between events before t1 and events after t1

    Returns
    -------
    pd.Series
        A series of datetime values representing generated events
    """

    t1_after = t1 + increase_time / 2
    n_after = int(
        (t_end - t1_after) * n_events / ((t1 - t_start) * increase_ratio + (t_end - t1))
    )

    return pd.to_datetime(
        pd.Series(generator.integers(t1_after, t_end, n_after)),
        unit="s",
    )