Skip to content

edsteva.io.i2b2_mapping

get_i2b2_table

get_i2b2_table(
    spark_session: SparkSession,
    db_name: str,
    db_source: str,
    table: str,
) -> SparkDataFrame

Retrieve a Spark table in i2b2 and transform it to fit with OMOP standard.

PARAMETER DESCRIPTION
db_name

Name of the database where the data is stored.

TYPE: str

table

Name of the table to extract.

TYPE: str

RETURNS DESCRIPTION
df

Spark DataFrame extracted from the i2b2 database given and converted to OMOP standard.

TYPE: Spark DataFrame

Source code in edsteva/io/i2b2_mapping.py
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def get_i2b2_table(
    spark_session: SparkSession, db_name: str, db_source: str, table: str
) -> SparkDataFrame:  # pragma: no cover
    """
    Retrieve a Spark table in i2b2 and transform it to fit with OMOP standard.

    Parameters
    ----------
    db_name: str
        Name of the database where the data is stored.
    table: str
        Name of the table to extract.

    Returns
    -------
    df: Spark DataFrame
        Spark DataFrame extracted from the i2b2 database given and converted to OMOP standard.
    """

    table_name = i2b2_tables[db_source][table]
    columns = i2b2_renaming[table]
    if db_source == "cse":
        columns.pop("i2b2_action", None)
    query = ",".join(["{k} AS {v}".format(k=k, v=v) for k, v in columns.items()])

    df = spark_session.sql(f"""SELECT {query} FROM {db_name}.{table_name}""")

    # Special mapping for i2b2 :

    # CIM10
    if table == "condition_occurrence":
        df = df.withColumn(
            "condition_source_value",
            F.split(F.col("condition_source_value"), ":").getItem(1),
        )

        # Retrieve UF
        df = df.withColumn(
            "care_site_source_value",
            F.split(F.col("care_site_source_value"), ":").getItem(1),
        )

    # CCAM
    elif table == "procedure_occurrence":
        df = df.withColumn(
            "procedure_source_value",
            F.split(F.col("procedure_source_value"), ":").getItem(1),
        )

    # Visits
    elif table == "visit_occurrence":
        df = df.withColumn(
            "visit_source_value",
            mapping_dict(visit_type_mapping, "Non Renseigné")(
                F.col("visit_source_value")
            ),
        )
        if db_source == "cse":
            df = df.withColumn("row_status_source_value", F.lit("Actif"))
            df = df.withColumn(
                "visit_occurrence_source_value", df["visit_occurrence_id"]
            )
        else:
            df = df.withColumn(
                "row_status_source_value",
                F.when(
                    F.col("row_status_source_value").isin([-1, -2]), "supprimé"
                ).otherwise("Actif"),
            )
        # Retrieve Hospital trigram
        ufr = spark_session.sql(
            f"SELECT * FROM {db_name}.{i2b2_tables[db_source]['visit_detail']}"
        )
        ufr = ufr.withColumn(
            "care_site_id",
            F.substring(F.split(F.col("concept_cd"), ":").getItem(1), 1, 3),
        )
        ufr = ufr.withColumnRenamed("encounter_num", "visit_occurrence_id")
        ufr = ufr.drop_duplicates(subset=["visit_occurrence_id"])
        ufr = ufr.select(["visit_occurrence_id", "care_site_id"])
        df = df.join(ufr, how="inner", on=["visit_occurrence_id"])

    # Patients
    elif table == "person":
        df = df.withColumn(
            "gender_source_value",
            mapping_dict(sex_cd_mapping, "Non Renseigné")(F.col("gender_source_value")),
        )

    # Documents
    elif table == "note":
        df = df.withColumn(
            "note_class_source_value",
            F.substring(F.col("note_class_source_value"), 4, 100),
        )
        if db_source == "cse":
            df = df.withColumn("row_status_source_value", F.lit("Actif"))
        else:
            df = df.withColumn(
                "row_status_source_value",
                F.when(F.col("row_status_source_value") < 0, "SUPP").otherwise("Actif"),
            )

    # Hospital trigrams
    elif table == "care_site":
        df = df.withColumn("care_site_type_source_value", F.lit("Hôpital"))
        df = df.withColumn(
            "care_site_source_value",
            F.split(F.col("care_site_source_value"), ":").getItem(1),
        )
        df = df.withColumn(
            "care_site_id", F.substring(F.col("care_site_source_value"), 1, 3)
        )
        df = df.drop_duplicates(subset=["care_site_id"])
        df = df.withColumn(
            "care_site_short_name",
            mapping_dict(dict_code_UFR, "Non Renseigné")(F.col("care_site_id")),
        )

    # UFR
    elif table == "visit_detail":
        df = df.withColumn(
            "care_site_id", F.split(F.col("care_site_id"), ":").getItem(1)
        )
        df = df.withColumn("visit_detail_type_source_value", F.lit("PASS"))
        df = df.withColumn("row_status_source_value", F.lit("Actif"))

    # biology
    elif table == "biology":
        df = df.withColumn(
            "biology_source_value", F.substring(F.col("biology_source_value"), 5, 20)
        )

    # fact_relationship
    elif table == "fact_relationship":
        # Retrieve UF information
        df = df.withColumn(
            "fact_id_1",
            F.split(F.col("care_site_source_value"), ":").getItem(1),
        )
        df = df.withColumn("domain_concept_id_1", F.lit(57))  # Care_site domain

        # Retrieve hospital information
        df = df.withColumn("fact_id_2", F.substring(F.col("fact_id_1"), 1, 3))
        df = df.withColumn("domain_concept_id_2", F.lit(57))  # Care_site domain
        df = df.drop_duplicates(subset=["fact_id_1", "fact_id_2"])

        # Only UF-Hospital relationships in i2b2
        df = df.withColumn("relationship_concept_id", F.lit(46233688))  # Included in

    return df

mapping_dict

mapping_dict(
    mapping: Dict[str, str], not_specified_val: str
) -> FunctionUDF

Returns a function that maps data according to a mapping dictionnary in a Spark DataFrame.

PARAMETER DESCRIPTION
mapping

Mapping dictionnary

TYPE: Dict[str, str]

not_specified_val

Value to return if the function input is not find in the mapping dictionnary.

TYPE: str

RETURNS DESCRIPTION
Callable

Function that maps the values of Spark DataFrame column.

Source code in edsteva/io/i2b2_mapping.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def mapping_dict(
    mapping: Dict[str, str], not_specified_val: str
) -> FunctionUDF:  # pragma: no cover
    """
    Returns a function that maps data according to a mapping dictionnary in a Spark DataFrame.

    Parameters
    ----------
    mapping: Dict
        Mapping dictionnary
    not_specified_val: str
        Value to return if the function input is not find in the mapping dictionnary.

    Returns
    -------
    Callable
        Function that maps the values of Spark DataFrame column.
    """

    def f(x):
        if x in mapping:
            return mapping.get(x)
        return not_specified_val

    return F.udf(f)