edspdf.layers.relative_attention
RelativeAttention
Bases: torch.nn.Module
A self/cross-attention layer that takes relative position of elements into account to compute the attention weights. When running a relative attention layer, key and queries are represented using content and position embeddings, where position embeddings are retrieved using the relative position of keys relative to queries
Source code in edspdf/layers/relative_attention.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | |
__init__(size, n_heads, query_size=None, key_size=None, value_size=None, head_size=None, position_embedding=None, dropout_p=0.1, same_key_query_proj=False, same_positional_key_query_proj=False, n_coordinates=1, head_bias=True, do_pooling=True, mode=('c2c', 'p2c', 'c2p'), n_additional_heads=0)
| PARAMETER | DESCRIPTION |
|---|---|
size |
The size of the output embeddings Also serves as default if query_size, pos_size, or key_size is None
TYPE:
|
n_heads |
The number of attention heads
TYPE:
|
query_size |
The size of the query embeddings.
TYPE:
|
key_size |
The size of the key embeddings.
TYPE:
|
value_size |
The size of the value embeddings
TYPE:
|
head_size |
The size of each query / key / value chunk used in the attention dot product
Default:
TYPE:
|
position_embedding |
The position embedding used as key and query embeddings
TYPE:
|
dropout_p |
Dropout probability applied on the attention weights Default: 0.1
TYPE:
|
same_key_query_proj |
Whether to use the same projection operator for content key and queries when computing the pre-attention key and query embedding chunks Default: False
TYPE:
|
same_positional_key_query_proj |
Whether to use the same projection operator for content key and queries when computing the pre-attention key and query embedding chunks Default: False
TYPE:
|
n_coordinates |
The number of positional coordinates For instance, text is 1D so 1 coordinate, images are 2D so 2 coordinates ... Default: 1
TYPE:
|
head_bias |
Whether to learn a bias term to add to the attention logits This is only useful if you plan to use the attention logits for subsequent operations, since attention weights are unaffected by bias terms.
TYPE:
|
do_pooling |
Whether to compute the output embedding. If you only plan to use attention logits, you should disable this parameter. Default: True
TYPE:
|
mode |
Whether to compute content to content (c2c), content to position (c2p)
or position to content (p2c) attention terms.
Setting
TYPE:
|
n_additional_heads |
The number of additional head logits to compute. Those are not used to compute output embeddings, but may be useful in subsequent operation. Default: 0
TYPE:
|
Source code in edspdf/layers/relative_attention.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | |
forward(content_queries, content_keys=None, content_values=None, mask=None, relative_positions=None, no_position_mask=None, base_attn=None)
Forward pass of the RelativeAttention layer.
| PARAMETER | DESCRIPTION |
|---|---|
content_queries |
The content query embedding to use in the attention computation
Shape:
TYPE:
|
content_keys |
The content key embedding to use in the attention computation.
If None, defaults to the
TYPE:
|
content_values |
The content values embedding to use in the final pooling computation.
If None, pooling won't be performed.
Shape:
TYPE:
|
mask |
The content key embedding to use in the attention computation.
If None, defaults to the
TYPE:
|
relative_positions |
The relative position of keys relative to queries
If None, positional attention terms won't be computed.
Shape:
TYPE:
|
no_position_mask |
Key / query pairs for which the position attention terms should
be disabled.
Shape:
TYPE:
|
base_attn |
Attention logits to add to the computed attention logits
Shape:
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Union[Tuple[torch.FloatTensor, torch.FloatTensor], torch.FloatTensor]
|
|
Source code in edspdf/layers/relative_attention.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | |