edspdf.layers.cnn_pooler
CnnPooler
Bases: Module
One dimension CNN encoding multi-kernel layer.
Input embeddings are convoluted using linear kernels each parametrized with
a (window) size of kernel_size[kernel_i]
The output of the kernels are concatenated together, max-pooled and finally
projected to a size of output_size.
Source code in edspdf/layers/cnn_pooler.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | |
__init__(input_size=None, output_size=None, out_channels=None, kernel_sizes=(3, 4, 5), activation='relu')
| PARAMETER | DESCRIPTION |
|---|---|
input_size |
Size of the input embeddings
TYPE:
|
output_size |
Size of the output embeddings
Defaults to the
TYPE:
|
out_channels |
Number of channels
TYPE:
|
kernel_sizes |
Window size of each kernel
TYPE:
|
activation |
Activation function to use
TYPE:
|
Source code in edspdf/layers/cnn_pooler.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | |
forward(embeds, mask)
Encode embeddings with a 1d convolutional network
| PARAMETER | DESCRIPTION |
|---|---|
embeds |
Input embeddings
Shape:
TYPE:
|
mask |
Input mask. 0 values are for padding elements.
Padding elements are masked with a 0 value before the convolution.
Shape:
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
torch.FloatTensor
|
|
Shape
|
Source code in edspdf/layers/cnn_pooler.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | |