Skip to content

edspdf.layers.box_text_embedding

BoxTextEmbedding

Bases: Module

A module that embeds the textual features of the blocks

Source code in edspdf/layers/box_text_embedding.py
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
@registry.factory.register("box-text-embedding")
class BoxTextEmbedding(Module):
    """
    A module that embeds the textual features of the blocks
    """

    def __init__(
        self,
        pooler: Module,
        size: Optional[int] = None,
    ):
        """
        Parameters
        ----------
        size: int
            Size of the output box embedding
        pooler: Dict
            The module used to encode the textual features of the blocks
        """
        super().__init__()

        self.size = size
        self.shape_voc = Vocabulary(["__unk__"], default=0)
        self.prefix_voc = Vocabulary(["__unk__"], default=0)
        self.suffix_voc = Vocabulary(["__unk__"], default=0)
        self.norm_voc = Vocabulary(["__unk__"], default=0)

        self.shape_embedding = None
        self.prefix_embedding = None
        self.suffix_embedding = None
        self.norm_embedding = None
        self.hpos_embedding = None
        self.vpos_embedding = None
        self.first_page_embedding = None
        self.last_page_embedding = None

        self.pooler = pooler

        punct = "[:punct:]" + "\"'ˊ"〃ײ᳓″״‶˶ʺ“”˝"
        num_like = r"\d+(?:[.,]\d+)?"
        default = rf"[^\d{punct}'\n[[:space:]]+(?:['ˊ](?=[[:alpha:]]|$))?"
        self.word_regex = regex.compile(
            rf"({num_like}|[{punct}]|[\n\r\t]|[^\S\r\n\t]+|{default})([^\S\r\n\t])?"
        )

    @property
    def output_size(self):
        return self.size

    def initialize(self, gold_data, size: int = None, **kwargs):
        super().initialize(gold_data, size=size, **kwargs)

        self.pooler.initialize(gold_data, input_size=size)

        shape_init = self.shape_voc.initialization()
        prefix_init = self.prefix_voc.initialization()
        suffix_init = self.suffix_voc.initialization()
        norm_init = self.norm_voc.initialization()
        with shape_init, prefix_init, suffix_init, norm_init:  # noqa: E501
            with self.no_cache():
                for doc in gold_data:
                    self.preprocess(doc, supervision=True)

        self.shape_embedding = torch.nn.Embedding(len(self.shape_voc), self.size)
        self.prefix_embedding = torch.nn.Embedding(len(self.prefix_voc), self.size)
        self.suffix_embedding = torch.nn.Embedding(len(self.suffix_voc), self.size)
        self.norm_embedding = torch.nn.Embedding(len(self.norm_voc), self.size)

    def preprocess(self, doc, supervision: bool = False):
        text_boxes = doc.lines

        tokens_shape = [[] for _ in text_boxes]
        tokens_prefix = [[] for _ in text_boxes]
        tokens_suffix = [[] for _ in text_boxes]
        tokens_norm = [[] for _ in text_boxes]
        for i, b in enumerate(text_boxes):
            words = [m.group(0) for m in self.word_regex.finditer(b.text)]

            for word in words:
                # ascii_str = unidecode(word)
                ascii_str = word
                tokens_shape[i].append(self.shape_voc.encode(word_shape(ascii_str)))
                tokens_prefix[i].append(self.prefix_voc.encode(ascii_str.lower()[:3]))
                tokens_suffix[i].append(self.suffix_voc.encode(ascii_str.lower()[-3:]))
                tokens_norm[i].append(self.norm_voc.encode(ascii_str.lower()))

        return {
            "tokens_shape": tokens_shape,
            "tokens_prefix": tokens_prefix,
            "tokens_suffix": tokens_suffix,
            "tokens_norm": tokens_norm,
        }

    def collate(self, batch, device: torch.device):
        shapes = pad_2d(flatten(batch["tokens_shape"]), pad=-1, device=device)
        mask = shapes != -1
        shapes[~mask] = 0
        return {
            "tokens_shape": shapes,
            "tokens_prefix": pad_2d(
                flatten(batch["tokens_prefix"]), pad=0, device=device
            ),
            "tokens_suffix": pad_2d(
                flatten(batch["tokens_suffix"]), pad=0, device=device
            ),
            "tokens_norm": pad_2d(flatten(batch["tokens_norm"]), pad=0, device=device),
            "tokens_mask": mask,
        }

    def forward(self, batch, supervision=False):
        text_embeds = self.pooler(
            embeds=(
                self.shape_embedding(batch["tokens_shape"])
                + self.prefix_embedding(batch["tokens_prefix"])
                + self.suffix_embedding(batch["tokens_suffix"])
                + self.norm_embedding(batch["tokens_norm"])
            ),
            mask=batch["tokens_mask"],
        )

        return text_embeds

__init__(pooler, size=None)

PARAMETER DESCRIPTION
size

Size of the output box embedding

TYPE: Optional[int] DEFAULT: None

pooler

The module used to encode the textual features of the blocks

TYPE: Module

Source code in edspdf/layers/box_text_embedding.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def __init__(
    self,
    pooler: Module,
    size: Optional[int] = None,
):
    """
    Parameters
    ----------
    size: int
        Size of the output box embedding
    pooler: Dict
        The module used to encode the textual features of the blocks
    """
    super().__init__()

    self.size = size
    self.shape_voc = Vocabulary(["__unk__"], default=0)
    self.prefix_voc = Vocabulary(["__unk__"], default=0)
    self.suffix_voc = Vocabulary(["__unk__"], default=0)
    self.norm_voc = Vocabulary(["__unk__"], default=0)

    self.shape_embedding = None
    self.prefix_embedding = None
    self.suffix_embedding = None
    self.norm_embedding = None
    self.hpos_embedding = None
    self.vpos_embedding = None
    self.first_page_embedding = None
    self.last_page_embedding = None

    self.pooler = pooler

    punct = "[:punct:]" + "\"'ˊ"〃ײ᳓″״‶˶ʺ“”˝"
    num_like = r"\d+(?:[.,]\d+)?"
    default = rf"[^\d{punct}'\n[[:space:]]+(?:['ˊ](?=[[:alpha:]]|$))?"
    self.word_regex = regex.compile(
        rf"({num_like}|[{punct}]|[\n\r\t]|[^\S\r\n\t]+|{default})([^\S\r\n\t])?"
    )

word_shape(text)

Converts a word into its shape following the algorithm used in the spaCy library.

https://github.com/explosion/spaCy/blob/b69d249a/spacy/lang/lex_attrs.py#L118

PARAMETER DESCRIPTION
text

TYPE: str

RETURNS DESCRIPTION
str
The word shape
Source code in edspdf/layers/box_text_embedding.py
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
def word_shape(text: str) -> str:
    """
    Converts a word into its shape following the algorithm used in the
    spaCy library.

    https://github.com/explosion/spaCy/blob/b69d249a/spacy/lang/lex_attrs.py#L118

    Parameters
    ----------
    text: str

    Returns
    -------
    str
    The word shape
    """
    if len(text) >= 100:
        return "LONG"

    shape = []
    last = ""
    seq = 0
    for char in text:
        if char.isalpha():
            if char.isupper():
                shape_char = "X"
            else:
                shape_char = "x"
        elif char.isdigit():
            shape_char = "d"
        else:
            shape_char = char
        if shape_char == last:
            seq += 1
        else:
            seq = 0
            last = shape_char
        if seq < 4:
            shape.append(shape_char)
    return "".join(shape)