Skip to content

edspdf.components.classifiers.harmonized_classifier

HarmonizedClassifier

Bases: TrainableComponent[PDFDoc, Dict[str, Any], PDFDoc]

Source code in edspdf/components/classifiers/harmonized_classifier.py
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
@registry.factory.register("harmonized-classifier")
class HarmonizedClassifier(TrainableComponent[PDFDoc, Dict[str, Any], PDFDoc]):
    def __init__(
        self,
        labels: Sequence[str],
        embedding: Module,
        activation: ActivationFunction = "gelu",
        do_harmonize: bool = True,
        n_relative_positions: int = 64,
        dropout_p: float = 0.15,
        scorer: Scorer = classifier_scorer,
    ):
        """
        Runs a deep learning classifier model on the boxes.

        Parameters
        ----------
        labels: Sequence[str]
            Initial labels of the classifier (will be completed during initialization)
        embedding: Module
            Embedding module to encode the PDF boxes
        activation: ActivationFunction
            Name of the activation function
        do_harmonize: bool
            Perform the harmonization process
        n_relative_positions: int
            Maximum range of embeddable relative positions between boxes during the
            harmonization process
        dropout_p: float
            Dropout probability used on the output of the box and textual encoders
        scorer: Scorer
            Scoring function
        """
        super().__init__()
        self.label_vocabulary: Vocabulary = Vocabulary(
            list(dict.fromkeys(["pollution", *labels]))
        )
        self.embedding: Module = embedding

        size = self.embedding.output_size

        self.do_harmonize = do_harmonize
        if self.do_harmonize:
            self.n_relative_positions = n_relative_positions
            self.box_preprocessor = BoxLayoutPreprocessor()

            self.adjacency = RelativeAttention(
                size=self.embedding.output_size,
                n_heads=2,
                do_pooling=False,
                head_size=self.embedding.output_size,
                position_embedding=torch.nn.Parameter(
                    torch.randn((n_relative_positions, self.embedding.output_size))
                ),
                dropout_p=0,
                n_coordinates=2,
                mode=(
                    RelativeAttentionMode.c2c,
                    RelativeAttentionMode.c2p,
                    RelativeAttentionMode.p2c,
                ),
            )

        self.linear = torch.nn.Linear(size, size)
        self.classifier: torch.nn.Linear = None  # noqa
        self.activation = get_activation_function(activation)
        self.dropout = torch.nn.Dropout(dropout_p)

        # Scoring function
        self.scorer = scorer

    def initialize(self, gold_data: Iterable[PDFDoc]):
        self.embedding.initialize(gold_data)

        with self.label_vocabulary.initialization():
            for doc in tqdm(gold_data, desc="Initializing classifier"):
                with self.no_cache():
                    self.preprocess(doc, supervision=True)

        self.classifier = torch.nn.Linear(
            in_features=self.embedding.output_size,
            out_features=len(self.label_vocabulary),
        )

    def preprocess(self, doc: PDFDoc, supervision: bool = False) -> Dict[str, Any]:
        result = {
            "embedding": self.embedding.preprocess(doc, supervision=supervision),
            "doc_id": doc.id,
        }
        if self.do_harmonize:
            result["boxes"] = self.box_preprocessor.preprocess(
                doc, supervision=supervision
            )
        if supervision:
            text_boxes = doc.lines
            result["labels"] = [
                self.label_vocabulary.encode(b.label) if b.label is not None else -100
                for b in text_boxes
            ]
            if self.do_harmonize:
                next_indices = [-1] * len(text_boxes)
                prev_indices = [-1] * len(text_boxes)
                for i, b in enumerate(doc.lines):
                    if b.next_box_idx is not None:
                        next_i = b.next_box_idx
                        next_indices[i] = next_i
                        prev_indices[next_i] = i
                result["next_indices"] = next_indices
                result["prev_indices"] = prev_indices
        return result

    def collate(self, batch, device: torch.device) -> Dict:
        collated = {
            "embedding": self.embedding.collate(batch["embedding"], device),
            "doc_id": batch["doc_id"],
        }
        if "labels" in batch:
            collated.update(
                {
                    "labels": torch.as_tensor(flatten(batch["labels"]), device=device),
                }
            )
        if "next_indices" in batch:
            shifted_next_indices = []
            shifted_prev_indices = []
            for doc_next_indices in batch["next_indices"]:
                offset = len(shifted_next_indices)
                shifted_next_indices.extend(
                    [i + offset if i > 0 else -1 for i in doc_next_indices]
                )
            for doc_prev_indices in batch["prev_indices"]:
                offset = len(shifted_prev_indices)
                shifted_prev_indices.extend(
                    [i + offset if i > 0 else -1 for i in doc_prev_indices]
                )
            collated.update(
                {
                    "next_indices": torch.as_tensor(
                        shifted_next_indices, device=device
                    ),
                    "prev_indices": torch.as_tensor(
                        shifted_prev_indices, device=device
                    ),
                }
            )
        if "boxes" in batch:
            collated.update(
                {
                    "boxes": self.box_preprocessor.collate(batch["boxes"], device),
                }
            )

        return collated

    def harmonize(self, block_label_logits, next_logits, prev_logits):
        n_pages, n_blocks, n_labels = block_label_logits.shape
        device = block_label_logits.device

        constraints = torch.eye(n_labels, n_labels + 1, device=device)
        constraints[:, -1] = 1

        is_next_logits = next_logits.log_softmax(-1)
        is_prev_logits = prev_logits.log_softmax(-1)

        label_logits = torch.full(
            (n_pages, n_blocks + 1, n_labels + 1), IMPOSSIBLE, device=device
        )
        label_logits[:n_pages, :n_blocks, :n_labels] = block_label_logits
        label_logits[:, -1, -1] = 0
        label_logits = updated_label_logits = label_logits.log_softmax(-1)
        label_update_logits = torch.zeros_like(label_logits)

        for _ in range(9):
            next_label_logits = log_einsum_exp(
                "pij,pjx->pix",
                is_next_logits,
                updated_label_logits,
            )
            prev_label_logits = log_einsum_exp(
                "pij,pjx->pix",
                is_prev_logits,
                updated_label_logits,
            )
            label_update_logits[..., :n_blocks, :n_labels] = 0.05 * label_update_logits[
                ..., :n_blocks, :n_labels
            ] + 0.95 * (
                log_einsum_exp(
                    "piy,xy->pix",
                    next_label_logits,
                    constraints.log(),
                )
                + log_einsum_exp(
                    "piy,xy->pix",
                    prev_label_logits,
                    constraints.log(),
                )
            )

            updated_label_logits = (label_update_logits + label_logits).log_softmax(-1)

        return updated_label_logits[:n_pages, :n_blocks, :n_labels]

    def forward(self, batch: Dict, supervision=False) -> Dict:
        embeds = self.embedding(batch["embedding"])
        device = embeds.device
        # ex: [[0, 2, -1], [1, 3, 4]]

        output = {"loss": 0}

        next_scores = prev_scores = None
        if self.do_harmonize:
            page_boxes = batch["boxes"]["page_ids"]
            page_boxes_mask = page_boxes != -1

            relative_positions = compute_pdf_relative_positions(
                x0=batch["boxes"]["xmin"][page_boxes],
                x1=batch["boxes"]["xmax"][page_boxes],
                y0=batch["boxes"]["ymin"][page_boxes],
                y1=batch["boxes"]["ymax"][page_boxes],
                width=batch["boxes"]["width"][page_boxes],
                height=batch["boxes"]["height"][page_boxes],
                n_relative_positions=self.n_relative_positions,
            )  # n_pages * n_blocks * n_blocks * 2

            # How to go from initial blocks ([0, 1, 2, 3, 4]) to per-page indice ?
            idx_in_page = page_boxes  # [[0, 2, -1], [1, 3, 4]]
            idx_in_page = idx_in_page.view(-1)  # [0, 2, -1, 1, 3, 4]
            idx_in_page = idx_in_page % len(idx_in_page + 1)  # [0, 2, 5, 1, 3, 4]
            idx_in_page = idx_in_page.argsort()[
                : page_boxes_mask.sum()
            ]  # [0, 3, 1, 4, 5]... and removed [, 2]
            idx_in_page = idx_in_page % page_boxes.shape[-1]  # [0, 0, 1, 1, 2]
            page_range = torch.arange(page_boxes_mask.shape[-1], device=device)
            # During the training, to learn adjacency, the two boxes must exist
            next_mask: torch.BoolTensor = page_boxes_mask[:, :, None] & page_boxes_mask[:, None, :]

            # During the training, to learn adjacency, the two boxes must exist
            prev_mask: torch.BoolTensor = page_boxes_mask[:, :, None] & page_boxes_mask[:, None, :]

            next_scores, prev_scores = self.adjacency(
                embeds[page_boxes],
                relative_positions=relative_positions,
            ).unbind(-1)

            next_scores = next_scores.masked_fill(~next_mask, IMPOSSIBLE)
            prev_scores = prev_scores.masked_fill(~prev_mask, IMPOSSIBLE)
            next_scores = torch.cat(
                [next_scores, torch.zeros_like(next_scores[:, :, :1])], dim=2
            )
            prev_scores = torch.cat(
                [prev_scores, torch.zeros_like(prev_scores[:, :, :1])], dim=2
            )

            if supervision:
                labels_per_page = batch["labels"][page_boxes]

                # n_blocks -> indice in page
                next_target = idx_in_page[batch["next_indices"]]
                next_target[batch["next_indices"] == -1] = next_scores.shape[-1] - 1
                next_target = next_target[:, None] == torch.arange(next_scores.shape[-1], device=device)

                next_target[batch["next_indices"] == -1, :-1] = (
                    (labels_per_page[:, :, None] == labels_per_page[:, None, :])
                    & (page_range[None, :, None] < page_range[None, None, :])
                    & next_mask
                )[page_boxes_mask][batch["next_indices"] == -1]

                # n_blocks -> indice in page
                prev_target = idx_in_page[batch["prev_indices"]]
                prev_target[batch["prev_indices"] == -1] = prev_scores.shape[-1] - 1
                prev_target = prev_target[:, None] == torch.arange(prev_scores.shape[-1], device=device)
                prev_target[batch["prev_indices"] == -1, :-1] = (
                    (labels_per_page[:, :, None] == labels_per_page[:, None, :])
                    & (page_range[None, :, None] > page_range[None, None, :])
                    & prev_mask
                )[page_boxes_mask][batch["prev_indices"] == -1]

                output["adj_loss"] = -(
                    torch.log_softmax(next_scores[page_boxes_mask], dim=-1)
                    .masked_fill(~next_target, -10000)
                    .logsumexp(-1)
                    .sum()
                    + torch.log_softmax(prev_scores[page_boxes_mask], dim=-1)
                    .masked_fill(~prev_target, -10000)
                    .logsumexp(-1)
                    .sum()
                )
                output["loss"] = output["loss"] + output["adj_loss"]
                output["next_target"] = next_target
                output["prev_target"] = prev_target

        # Label prediction / learning
        logits = self.classifier(embeds)
        if supervision:
            targets = batch["labels"]
            output["label_loss"] = (F.cross_entropy(
                logits,
                targets,
                reduction="sum",
            ) / 100) ** 2
            output["loss"] = output["loss"] + output["label_loss"]
        else:
            if self.do_harmonize:
                logits = self.harmonize(
                    logits[page_boxes],
                    next_scores,
                    prev_scores,
                )[page_boxes_mask]
            output["next_scores"] = next_scores
            output["prev_scores"] = prev_scores
            output["logits"] = logits
            output["labels"] = logits.argmax(-1)

        return output

    def postprocess(self, docs: Sequence[PDFDoc], output: Dict) -> Sequence[PDFDoc]:
        for b, label in zip(
            (b for doc in docs for b in doc.lines),
            output["labels"].cpu().tolist(),
        ):
            if b.text == "":
                b.label = None
            else:
                b.label = self.label_vocabulary.decode(label)
        return docs

__init__(labels, embedding, activation='gelu', do_harmonize=True, n_relative_positions=64, dropout_p=0.15, scorer=classifier_scorer)

Runs a deep learning classifier model on the boxes.

PARAMETER DESCRIPTION
labels

Initial labels of the classifier (will be completed during initialization)

TYPE: Sequence[str]

embedding

Embedding module to encode the PDF boxes

TYPE: Module

activation

Name of the activation function

TYPE: ActivationFunction DEFAULT: 'gelu'

do_harmonize

Perform the harmonization process

TYPE: bool DEFAULT: True

n_relative_positions

Maximum range of embeddable relative positions between boxes during the harmonization process

TYPE: int DEFAULT: 64

dropout_p

Dropout probability used on the output of the box and textual encoders

TYPE: float DEFAULT: 0.15

scorer

Scoring function

TYPE: Scorer DEFAULT: classifier_scorer

Source code in edspdf/components/classifiers/harmonized_classifier.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
def __init__(
    self,
    labels: Sequence[str],
    embedding: Module,
    activation: ActivationFunction = "gelu",
    do_harmonize: bool = True,
    n_relative_positions: int = 64,
    dropout_p: float = 0.15,
    scorer: Scorer = classifier_scorer,
):
    """
    Runs a deep learning classifier model on the boxes.

    Parameters
    ----------
    labels: Sequence[str]
        Initial labels of the classifier (will be completed during initialization)
    embedding: Module
        Embedding module to encode the PDF boxes
    activation: ActivationFunction
        Name of the activation function
    do_harmonize: bool
        Perform the harmonization process
    n_relative_positions: int
        Maximum range of embeddable relative positions between boxes during the
        harmonization process
    dropout_p: float
        Dropout probability used on the output of the box and textual encoders
    scorer: Scorer
        Scoring function
    """
    super().__init__()
    self.label_vocabulary: Vocabulary = Vocabulary(
        list(dict.fromkeys(["pollution", *labels]))
    )
    self.embedding: Module = embedding

    size = self.embedding.output_size

    self.do_harmonize = do_harmonize
    if self.do_harmonize:
        self.n_relative_positions = n_relative_positions
        self.box_preprocessor = BoxLayoutPreprocessor()

        self.adjacency = RelativeAttention(
            size=self.embedding.output_size,
            n_heads=2,
            do_pooling=False,
            head_size=self.embedding.output_size,
            position_embedding=torch.nn.Parameter(
                torch.randn((n_relative_positions, self.embedding.output_size))
            ),
            dropout_p=0,
            n_coordinates=2,
            mode=(
                RelativeAttentionMode.c2c,
                RelativeAttentionMode.c2p,
                RelativeAttentionMode.p2c,
            ),
        )

    self.linear = torch.nn.Linear(size, size)
    self.classifier: torch.nn.Linear = None  # noqa
    self.activation = get_activation_function(activation)
    self.dropout = torch.nn.Dropout(dropout_p)

    # Scoring function
    self.scorer = scorer