Skip to content

edspdf.component

Component

Bases: Generic[InT, OutT]

Source code in edspdf/component.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
class Component(Generic[InT, OutT]):
    def __init__(
        self,
        scorer: Optional[Scorer[OutT]] = None,
    ):
        self.name: Optional[str] = None
        self.scorer = scorer
        self.needs_training = False
        self.initialized = False

    def reset_cache(self, cache: Optional[CacheEnum] = None):
        pass

    def initialize(self, gold_data: Iterable[OutT]):
        """
        Initialize the missing properties of the component, such as its vocabulary,
        using the gold data.

        Parameters
        ----------
        gold_data: Iterable[OutT]
            Gold data to use for initialization
        """

    @abstractmethod
    def __call__(self, doc: InT) -> OutT:
        """
        Processes a single document

        Parameters
        ----------
        doc: InT
            Document to process

        Returns
        -------
        OutT
            Processed document
        """

    def batch_process(self, docs: Sequence[InT], refs=None) -> Sequence[OutT]:
        return [self(doc) for doc in docs]

    def score(self, pairs):
        if self.scorer is None:
            return {}
        return self.scorer(pairs)

    def __repr__(self):
        return "{}()".format(self.__class__.__name__)

    def pipe(self, docs: Iterable[InT], batch_size=1) -> Iterable[OutT]:
        """
        Applies the component on a collection of documents. It is recommended to use
        the [`Pipeline.pipe`][edspdf.pipeline.Pipeline.pipe] method instead of this one
        to apply a pipeline on a collection of documents, to benefit from the caching
        of intermediate results and avoiding loading too many documents in memory at
        once.

        Parameters
        ----------
        docs: Iterable[InT]
            Input docs
        batch_size: int
            Batch size to use when making batched to be process at once
        """
        for batch in batchify(docs, batch_size=batch_size):
            self.reset_cache()
            yield from self.batch_process(batch)

initialize(gold_data)

Initialize the missing properties of the component, such as its vocabulary, using the gold data.

PARAMETER DESCRIPTION
gold_data

Gold data to use for initialization

TYPE: Iterable[OutT]

Source code in edspdf/component.py
109
110
111
112
113
114
115
116
117
118
def initialize(self, gold_data: Iterable[OutT]):
    """
    Initialize the missing properties of the component, such as its vocabulary,
    using the gold data.

    Parameters
    ----------
    gold_data: Iterable[OutT]
        Gold data to use for initialization
    """

__call__(doc) abstractmethod

Processes a single document

PARAMETER DESCRIPTION
doc

Document to process

TYPE: InT

RETURNS DESCRIPTION
OutT

Processed document

Source code in edspdf/component.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
@abstractmethod
def __call__(self, doc: InT) -> OutT:
    """
    Processes a single document

    Parameters
    ----------
    doc: InT
        Document to process

    Returns
    -------
    OutT
        Processed document
    """

pipe(docs, batch_size=1)

Applies the component on a collection of documents. It is recommended to use the Pipeline.pipe method instead of this one to apply a pipeline on a collection of documents, to benefit from the caching of intermediate results and avoiding loading too many documents in memory at once.

PARAMETER DESCRIPTION
docs

Input docs

TYPE: Iterable[InT]

batch_size

Batch size to use when making batched to be process at once

DEFAULT: 1

Source code in edspdf/component.py
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def pipe(self, docs: Iterable[InT], batch_size=1) -> Iterable[OutT]:
    """
    Applies the component on a collection of documents. It is recommended to use
    the [`Pipeline.pipe`][edspdf.pipeline.Pipeline.pipe] method instead of this one
    to apply a pipeline on a collection of documents, to benefit from the caching
    of intermediate results and avoiding loading too many documents in memory at
    once.

    Parameters
    ----------
    docs: Iterable[InT]
        Input docs
    batch_size: int
        Batch size to use when making batched to be process at once
    """
    for batch in batchify(docs, batch_size=batch_size):
        self.reset_cache()
        yield from self.batch_process(batch)

Module

Bases: torch.nn.Module, Generic[InT, BatchT]

Base class for all EDS-PDF modules. This class is an extension of Pytorch's torch.nn.Module class. It adds a few methods to handle preprocessing and collating features, as well as caching intermediate results for components that share a common subcomponent.

Source code in edspdf/component.py
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
class Module(torch.nn.Module, Generic[InT, BatchT], metaclass=ModuleMeta):
    """
    Base class for all EDS-PDF modules. This class is an extension of Pytorch's
    `torch.nn.Module` class. It adds a few methods to handle preprocessing and collating
    features, as well as caching intermediate results for components that share a common
    subcomponent.
    """

    IS_MODULE = True

    def __init__(self):
        super().__init__()
        self._preprocess_cache = {}
        self._collate_cache = {}
        self._forward_cache = {}
        self._do_cache = True

    @contextlib.contextmanager
    def no_cache(self):
        saved = self.enable_cache(False)
        yield
        self.enable_cache(saved)

    def initialize(self, gold_data: Iterable[InT], **kwargs):
        """
        Initialize the missing properties of the module, such as its vocabulary,
        using the gold data and the provided keyword arguments.

        Parameters
        ----------
        gold_data: Iterable[InT]
            Gold data to use for initialization
        kwargs: Any
            Additional keyword arguments to use for initialization
        """
        for name, value in kwargs.items():
            if value is None:
                continue
            current_value = getattr(self, name)
            if current_value is not None and current_value != value:
                raise ValueError(
                    "Cannot initialize module with different values for "
                    "attribute '{}': {} != {}".format(name, current_value, value)
                )
            setattr(self, name, value)

    def enable_cache(self, do_cache):
        saved = self._do_cache
        self._do_cache = do_cache

        for module in self.modules():
            if isinstance(module, Module) and module is not self:
                module.enable_cache(do_cache)

        return saved

    @property
    def device(self):
        return next(iter(self.parameters())).device

    def reset_cache(self, cache: Optional[CacheEnum] = None):
        def clear(module):
            try:
                assert cache is None or cache in (
                    CacheEnum.preprocess,
                    CacheEnum.collate,
                    CacheEnum.forward,
                )
                if cache is None or cache == CacheEnum.preprocess:
                    module._preprocess_cache.clear()
                if cache is None or cache == CacheEnum.collate:
                    module._collate_cache.clear()
                if cache is None or cache == CacheEnum.forward:
                    module._forward_cache.clear()
            except AttributeError:
                pass

        self.apply(clear)

    def preprocess(self, doc: InT, supervision: bool = False) -> Dict[str, Any]:
        """
        Parameters
        ----------
        doc: InT
        supervision: bool

        Returns
        -------
        Dict[str, Any]
        """
        return {}

    def collate(self, batch: Dict[str, Sequence[Any]], device: torch.device) -> BatchT:
        """Collate operation : should return some tensors"""
        return {}

    def forward(self, *args, **kwargs) -> Dict[str, Any]:
        """Forward pass of the torch module"""
        raise NotImplementedError()

    def module_forward(self, *args, **kwargs):
        """
        This is a wrapper around `torch.nn.Module.__call__` to avoid conflict
        with the [`Component.__call__`][edspdf.component.Component.__call__]
         method.
        """
        return torch.nn.Module.__call__(self, *args, **kwargs)

initialize(gold_data, **kwargs)

Initialize the missing properties of the module, such as its vocabulary, using the gold data and the provided keyword arguments.

PARAMETER DESCRIPTION
gold_data

Gold data to use for initialization

TYPE: Iterable[InT]

kwargs

Additional keyword arguments to use for initialization

DEFAULT: {}

Source code in edspdf/component.py
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def initialize(self, gold_data: Iterable[InT], **kwargs):
    """
    Initialize the missing properties of the module, such as its vocabulary,
    using the gold data and the provided keyword arguments.

    Parameters
    ----------
    gold_data: Iterable[InT]
        Gold data to use for initialization
    kwargs: Any
        Additional keyword arguments to use for initialization
    """
    for name, value in kwargs.items():
        if value is None:
            continue
        current_value = getattr(self, name)
        if current_value is not None and current_value != value:
            raise ValueError(
                "Cannot initialize module with different values for "
                "attribute '{}': {} != {}".format(name, current_value, value)
            )
        setattr(self, name, value)

preprocess(doc, supervision=False)

PARAMETER DESCRIPTION
doc

TYPE: InT

supervision

TYPE: bool DEFAULT: False

RETURNS DESCRIPTION
Dict[str, Any]
Source code in edspdf/component.py
258
259
260
261
262
263
264
265
266
267
268
269
def preprocess(self, doc: InT, supervision: bool = False) -> Dict[str, Any]:
    """
    Parameters
    ----------
    doc: InT
    supervision: bool

    Returns
    -------
    Dict[str, Any]
    """
    return {}

collate(batch, device)

Collate operation : should return some tensors

Source code in edspdf/component.py
271
272
273
def collate(self, batch: Dict[str, Sequence[Any]], device: torch.device) -> BatchT:
    """Collate operation : should return some tensors"""
    return {}

forward(*args, **kwargs)

Forward pass of the torch module

Source code in edspdf/component.py
275
276
277
def forward(self, *args, **kwargs) -> Dict[str, Any]:
    """Forward pass of the torch module"""
    raise NotImplementedError()

module_forward(*args, **kwargs)

This is a wrapper around torch.nn.Module.__call__ to avoid conflict with the Component.__call__ method.

Source code in edspdf/component.py
279
280
281
282
283
284
285
def module_forward(self, *args, **kwargs):
    """
    This is a wrapper around `torch.nn.Module.__call__` to avoid conflict
    with the [`Component.__call__`][edspdf.component.Component.__call__]
     method.
    """
    return torch.nn.Module.__call__(self, *args, **kwargs)

TrainableComponent

Bases: Module[InT, BatchT], Component[InT, OutT]

A TrainableComponent is a Component that can be trained and inherits from both Module and Component. You can therefore use it either as a torch module inside a more complex neural network, or as a standalone component in a Pipeline.

Source code in edspdf/component.py
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
class TrainableComponent(Module[InT, BatchT], Component[InT, OutT]):
    """
    A TrainableComponent is a Component that can be trained and inherits from both
    `Module` and `Component`. You can therefore use it either as a torch module inside
    a more complex neural network, or as a standalone component in a
    [Pipeline][edspdf.pipeline.Pipeline].
    """

    def __init__(self):
        Module.__init__(self)
        Component.__init__(self)
        self.needs_training = True

    def __call__(self, doc: InT) -> OutT:
        return next(iter(self.batch_process([doc])))

    def make_batch(self, docs: Sequence[InT], supervision: bool = False):
        batch = decompress_dict(
            list(
                batch_compress_dict(
                    [{self.name: self.preprocess(doc, supervision)} for doc in docs]
                )
            )
        )
        return batch

    def batch_process(self, docs: Sequence[InT], refs=None) -> Sequence[OutT]:
        with torch.no_grad():
            batch = self.make_batch(docs)

            inputs = self.collate(batch[self.name], device=self.device)
            res = self.forward(inputs)
            docs = self.postprocess(docs, res)
            return docs

    def forward(self, batch: BatchT, supervision=False) -> Dict[str, Any]:
        return batch

    def postprocess(self, docs: Sequence[InT], batch: Dict[str, Any]) -> Sequence[OutT]:
        return docs