edspdf.component
Component
Bases: Generic[InT, OutT]
Source code in edspdf/component.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | |
initialize(gold_data)
Initialize the missing properties of the component, such as its vocabulary, using the gold data.
| PARAMETER | DESCRIPTION |
|---|---|
gold_data |
Gold data to use for initialization
TYPE:
|
Source code in edspdf/component.py
109 110 111 112 113 114 115 116 117 118 | |
__call__(doc)
abstractmethod
Processes a single document
| PARAMETER | DESCRIPTION |
|---|---|
doc |
Document to process
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
OutT
|
Processed document |
Source code in edspdf/component.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | |
pipe(docs, batch_size=1)
Applies the component on a collection of documents. It is recommended to use
the Pipeline.pipe method instead of this one
to apply a pipeline on a collection of documents, to benefit from the caching
of intermediate results and avoiding loading too many documents in memory at
once.
| PARAMETER | DESCRIPTION |
|---|---|
docs |
Input docs
TYPE:
|
batch_size |
Batch size to use when making batched to be process at once
DEFAULT:
|
Source code in edspdf/component.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | |
Module
Bases: torch.nn.Module, Generic[InT, BatchT]
Base class for all EDS-PDF modules. This class is an extension of Pytorch's
torch.nn.Module class. It adds a few methods to handle preprocessing and collating
features, as well as caching intermediate results for components that share a common
subcomponent.
Source code in edspdf/component.py
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | |
initialize(gold_data, **kwargs)
Initialize the missing properties of the module, such as its vocabulary, using the gold data and the provided keyword arguments.
| PARAMETER | DESCRIPTION |
|---|---|
gold_data |
Gold data to use for initialization
TYPE:
|
kwargs |
Additional keyword arguments to use for initialization
DEFAULT:
|
Source code in edspdf/component.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | |
preprocess(doc, supervision=False)
| PARAMETER | DESCRIPTION |
|---|---|
doc |
TYPE:
|
supervision |
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
Dict[str, Any]
|
Source code in edspdf/component.py
258 259 260 261 262 263 264 265 266 267 268 269 | |
collate(batch, device)
Collate operation : should return some tensors
Source code in edspdf/component.py
271 272 273 | |
forward(*args, **kwargs)
Forward pass of the torch module
Source code in edspdf/component.py
275 276 277 | |
module_forward(*args, **kwargs)
This is a wrapper around torch.nn.Module.__call__ to avoid conflict
with the Component.__call__
method.
Source code in edspdf/component.py
279 280 281 282 283 284 285 | |
TrainableComponent
Bases: Module[InT, BatchT], Component[InT, OutT]
A TrainableComponent is a Component that can be trained and inherits from both
Module and Component. You can therefore use it either as a torch module inside
a more complex neural network, or as a standalone component in a
Pipeline.
Source code in edspdf/component.py
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | |