18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470 | class History(Qualifier):
"""
Implements a history detection algorithm.
The component looks for terms indicating history in the text.
Parameters
----------
nlp : Language
spaCy nlp pipeline to use for matching.
history : Optional[List[str]]
List of terms indicating medical history reference.
use_sections : bool
Whether to use section pipeline to detect medical history section.
use_dates : bool
Whether to use dates pipeline to detect if the event occurs
a long time before the document date.
history_limit : int
The number of days after which the event is considered as history.
exclude_birthdate : bool
Whether to exclude the birth date from history dates.
closest_dates_only : bool
Whether to include the closest dates only.
attr : str
spaCy's attribute to use:
a string with the value "TEXT" or "NORM", or a dict with the key 'term_attr'
we can also add a key for each regex.
on_ents_only : Union[bool, str, List[str], Set[str]]
Whether to look for matches around detected entities only.
Useful for faster inference in downstream tasks.
- If True, will look in all ents located in `doc.ents` only
- If an iterable of string is passed, will additionally look in `doc.spans[key]`
for each key in the iterable
explain : bool
Whether to keep track of cues for each entity.
"""
defaults = dict(
history=history,
termination=termination,
)
def __init__(
self,
nlp: Language,
attr: str,
history: Optional[List[str]],
termination: Optional[List[str]],
use_sections: bool,
use_dates: bool,
history_limit: int,
closest_dates_only: bool,
exclude_birthdate: bool,
explain: bool,
on_ents_only: Union[bool, str, List[str], Set[str]],
):
terms = self.get_defaults(
history=history,
termination=termination,
)
super().__init__(
nlp=nlp,
attr=attr,
on_ents_only=on_ents_only,
explain=explain,
**terms,
)
self.set_extensions()
self.history_limit = timedelta(history_limit)
self.exclude_birthdate = exclude_birthdate
self.closest_dates_only = closest_dates_only
self.sections = use_sections and (
"eds.sections" in nlp.pipe_names or "sections" in nlp.pipe_names
)
if use_sections and not self.sections:
logger.warning(
"You have requested that the pipeline use annotations "
"provided by the `section` pipeline, but it was not set. "
"Skipping that step."
)
self.dates = use_dates and (
"eds.dates" in nlp.pipe_names or "dates" in nlp.pipe_names
)
if use_dates:
if not self.dates:
logger.warning(
"You have requested that the pipeline use dates "
"provided by the `dates` pipeline, but it was not set. "
"Skipping that step."
)
elif exclude_birthdate:
logger.info(
"You have requested that the pipeline use date "
"and exclude birth dates. "
"To make the most of this feature, "
"make sur you provide the `birth_datetime` "
"context and `note_datetime` context. "
)
else:
logger.info(
"You have requested that the pipeline use date "
"To make the most of this feature, "
"make sure you provide the `note_datetime` "
"context. "
)
@classmethod
def set_extensions(cls) -> None:
if not Token.has_extension("history"):
Token.set_extension("history", default=False)
if not Token.has_extension("antecedents"):
Token.set_extension(
"antecedents",
getter=deprecated_getter_factory("antecedents", "history"),
)
if not Token.has_extension("antecedent"):
Token.set_extension(
"antecedent",
getter=deprecated_getter_factory("antecedent", "history"),
)
if not Token.has_extension("history_"):
Token.set_extension(
"history_",
getter=lambda token: "ATCD" if token._.history else "CURRENT",
)
if not Token.has_extension("antecedents_"):
Token.set_extension(
"antecedents_",
getter=deprecated_getter_factory("antecedents_", "history_"),
)
if not Token.has_extension("antecedent_"):
Token.set_extension(
"antecedent_",
getter=deprecated_getter_factory("antecedent_", "history_"),
)
if not Span.has_extension("history"):
Span.set_extension("history", default=False)
if not Span.has_extension("antecedents"):
Span.set_extension(
"antecedents",
getter=deprecated_getter_factory("antecedents", "history"),
)
if not Span.has_extension("antecedent"):
Span.set_extension(
"antecedent",
getter=deprecated_getter_factory("antecedent", "history"),
)
if not Span.has_extension("history_"):
Span.set_extension(
"history_",
getter=lambda span: "ATCD" if span._.history else "CURRENT",
)
if not Span.has_extension("antecedents_"):
Span.set_extension(
"antecedents_",
getter=deprecated_getter_factory("antecedents_", "history_"),
)
if not Span.has_extension("antecedent_"):
Span.set_extension(
"antecedent_",
getter=deprecated_getter_factory("antecedent_", "history_"),
)
# Store history mentions responsible for the history entity's character
if not Span.has_extension("history_cues"):
Span.set_extension("history_cues", default=[])
# Store recent mentions responsible for the non-antecedent entity's character
if not Span.has_extension("recent_cues"):
Span.set_extension("recent_cues", default=[])
if not Span.has_extension("antecedents_cues"):
Span.set_extension(
"antecedents_cues",
getter=deprecated_getter_factory("antecedents_cues", "history_cues"),
)
if not Span.has_extension("antecedent_cues"):
Span.set_extension(
"antecedent_cues",
getter=deprecated_getter_factory("antecedent_cues", "history_cues"),
)
def process(self, doc: Doc) -> Doc:
"""
Finds entities related to history.
Parameters
----------
doc:
spaCy Doc object
Returns
-------
doc:
spaCy Doc object, annotated for history
"""
if doc._.note_datetime is not None:
try:
note_datetime = pendulum.instance(doc._.note_datetime)
note_datetime = note_datetime.set(tz="Europe/Paris")
except ValueError:
logger.debug(
"note_datetime must be a datetime objects. "
"Skipping history qualification from note_datetime."
)
note_datetime = None
if doc._.birth_datetime is not None:
try:
birth_datetime = pendulum.instance(doc._.birth_datetime)
birth_datetime = birth_datetime.set(tz="Europe/Paris")
except ValueError:
logger.debug(
"birth_datetime must be a datetime objects. "
"Skipping history qualification from birth date."
)
birth_datetime = None
matches = self.get_matches(doc)
terminations = get_spans(matches, "termination")
boundaries = self._boundaries(doc, terminations)
# Removes duplicate matches and pseudo-expressions in one statement
matches = filter_spans(matches, label_to_remove="pseudo")
entities = self.get_spans(doc)
ents = None
sub_sections = None
sub_recent_dates = None
sub_history_dates = None
sections = []
if self.sections:
sections = [
Span(doc, section.start, section.end, label="ATCD")
for section in doc.spans["sections"]
if section.label_ in sections_history
]
history_dates = []
recent_dates = []
if self.dates:
for date in doc.spans["dates"]:
if date.label_ == "relative":
if date._.date.direction.value == "CURRENT":
if (
(
date._.date.year == 0
and self.history_limit >= timedelta(365)
)
or (
date._.date.month == 0
and self.history_limit >= timedelta(30)
)
or (
date._.date.week == 0
and self.history_limit >= timedelta(7)
)
or (date._.date.day == 0)
):
recent_dates.append(
Span(doc, date.start, date.end, label="relative_date")
)
elif date._.date.direction.value == "PAST":
if -date._.date.to_datetime() >= self.history_limit:
history_dates.append(
Span(doc, date.start, date.end, label="relative_date")
)
else:
recent_dates.append(
Span(doc, date.start, date.end, label="relative_date")
)
elif date.label_ == "absolute" and doc._.note_datetime:
try:
absolute_date = date._.date.to_datetime(
note_datetime=note_datetime,
infer_from_context=True,
tz="Europe/Paris",
default_day=15,
)
except ValueError as e:
absolute_date = None
logger.warning(
"In doc {}, the following date {} raises this error: {}. "
"Skipping this date.",
doc._.note_id,
date._.date,
e,
)
if absolute_date:
if note_datetime.diff(absolute_date) < self.history_limit:
recent_dates.append(
Span(doc, date.start, date.end, label="absolute_date")
)
elif not (
self.exclude_birthdate
and birth_datetime
and absolute_date == birth_datetime
):
history_dates.append(
Span(doc, date.start, date.end, label="absolute_date")
)
for start, end in boundaries:
ents, entities = consume_spans(
entities,
filter=lambda s: check_inclusion(s, start, end),
second_chance=ents,
)
sub_matches, matches = consume_spans(
matches, lambda s: start <= s.start < end
)
if self.sections:
sub_sections, sections = consume_spans(
sections, lambda s: s.start < end <= s.end, sub_sections
)
if self.dates:
sub_recent_dates, recent_dates = consume_spans(
recent_dates,
lambda s: check_sent_inclusion(s, start, end),
sub_recent_dates,
)
sub_history_dates, history_dates = consume_spans(
history_dates,
lambda s: check_sent_inclusion(s, start, end),
sub_history_dates,
)
# Filter dates inside the boundaries only
if self.closest_dates_only:
close_recent_dates = []
close_history_dates = []
if sub_recent_dates:
close_recent_dates = [
recent_date
for recent_date in sub_recent_dates
if check_inclusion(recent_date, start, end)
]
if sub_history_dates:
close_history_dates = [
history_date
for history_date in sub_history_dates
if check_inclusion(history_date, start, end)
]
# If no date inside the boundaries, get the closest
if not close_recent_dates and not close_history_dates:
min_distance_recent_date = min(
[
abs(sub_recent_date.start - start)
for sub_recent_date in sub_recent_dates
]
)
min_distance_history_date = min(
[
abs(sub_history_date.start - start)
for sub_history_date in sub_history_dates
]
)
if min_distance_recent_date < min_distance_history_date:
close_recent_dates = [
min(
sub_recent_dates,
key=lambda x: abs(x.start - start),
)
]
else:
close_history_dates = [
min(
sub_history_dates,
key=lambda x: abs(x.start - start),
)
]
elif not close_recent_dates:
close_recent_dates = [
min(
sub_recent_dates,
key=lambda x: abs(x.start - start),
)
]
elif sub_history_dates:
close_history_dates = [
history_date
for history_date in sub_history_dates
if check_inclusion(history_date, start, end)
]
# If no date inside the boundaries, get the closest
if not close_history_dates:
close_history_dates = [
min(
sub_history_dates,
key=lambda x: abs(x.start - start),
)
]
if self.on_ents_only and not ents:
continue
history_cues = get_spans(sub_matches, "history")
recent_cues = []
if self.sections:
history_cues.extend(sub_sections)
if self.dates:
history_cues.extend(
close_history_dates
if self.closest_dates_only
else sub_history_dates
)
recent_cues.extend(
close_recent_dates if self.closest_dates_only else sub_recent_dates
)
history = bool(history_cues) and not bool(recent_cues)
if not self.on_ents_only:
for token in doc[start:end]:
token._.history = history
for ent in ents:
ent._.history = ent._.history or history
if self.explain:
ent._.history_cues += history_cues
ent._.recent_cues += recent_cues
if not self.on_ents_only and ent._.history:
for token in ent:
token._.history = True
return doc
|