Skip to content

edsnlp.pipelines.core.endlines.endlinesmodel

EndLinesModel

Model to classify if an end line is a real one or it should be a space.

PARAMETER DESCRIPTION
nlp

spaCy nlp pipeline to use for matching.

TYPE: Language

Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
class EndLinesModel:
    """Model to classify if an end line is a real one or it should be a space.

    Parameters
    ----------
    nlp : Language
        spaCy nlp pipeline to use for matching.
    """

    def __init__(self, nlp: Language):
        self.nlp = nlp

    def _preprocess_data(self, corpus: Iterable[Doc]) -> pd.DataFrame:
        """
        Parameters
        ----------
        corpus : Iterable[Doc]
            Corpus of documents

        Returns
        -------
        pd.DataFrame
            Preprocessed data
        """
        # Extract the vocabulary
        string_store = self.nlp.vocab.strings

        # Iterate in the corpus and construct a dataframe
        train_data_list = []
        for i, doc in enumerate(corpus):
            train_data_list.append(self._get_attributes(doc, i))

        df = pd.concat(train_data_list)
        df.reset_index(inplace=True, drop=False)
        df.rename(columns={"ORTH": "A1", "index": "original_token_index"}, inplace=True)

        # Retrieve string representation of token_id and shape
        df["TEXT"] = df.A1.apply(self._get_string, string_store=string_store)
        df["SHAPE_"] = df.SHAPE.apply(self._get_string, string_store=string_store)

        # Convert new lines as an attribute instead of a row
        df = self._convert_line_to_attribute(df, expr="\n", col="END_LINE")
        df = self._convert_line_to_attribute(df, expr="\n\n", col="BLANK_LINE")
        df = df.loc[~(df.END_LINE | df.BLANK_LINE)]
        df = df.drop(columns="END_LINE")
        df = df.drop(columns="BLANK_LINE")
        df.rename(
            columns={"TEMP_END_LINE": "END_LINE", "TEMP_BLANK_LINE": "BLANK_LINE"},
            inplace=True,
        )

        # Construct A2 by shifting
        df = self._shift_col(df, "A1", "A2", direction="backward")

        # Compute A3 and A4
        df = self._compute_a3(df)
        df = self._shift_col(df, "A3", "A4", direction="backward")

        # SPACE is the class to predict. Set 1 if not an END_LINE
        df["SPACE"] = np.logical_not(df["END_LINE"]).astype("int")

        df[["END_LINE", "BLANK_LINE"]] = df[["END_LINE", "BLANK_LINE"]].fillna(
            True, inplace=False
        )

        # Assign a sentence id to each token
        df = df.groupby("DOC_ID").apply(self._retrieve_lines)
        df["SENTENCE_ID"] = df["SENTENCE_ID"].astype("int")

        # Compute B1 and B2
        df = self._compute_B(df)

        # Drop Tokens without info (last token of doc)
        df.dropna(subset=["A1", "A2", "A3", "A4"], inplace=True)

        # Export the vocabularies to be able to use the model with another corpus
        voc_a3a4 = self._create_vocabulary(df.A3_.cat.categories)
        voc_B2 = self._create_vocabulary(df.cv_bin.cat.categories)
        voc_B1 = self._create_vocabulary(df.l_norm_bin.cat.categories)

        vocabulary = {"A3A4": voc_a3a4, "B1": voc_B1, "B2": voc_B2}

        self.vocabulary = vocabulary

        return df

    def fit_and_predict(self, corpus: Iterable[Doc]) -> pd.DataFrame:
        """Fit the model and predict for the training data

        Parameters
        ----------
        corpus : Iterable[Doc]
            An iterable of Documents

        Returns
        -------
        pd.DataFrame
            one line by end_line prediction
        """

        # Preprocess data to have a pd DF
        df = self._preprocess_data(corpus)

        # Train and predict M1
        self._fit_M1(df.A1, df.A2, df.A3, df.A4, df.SPACE)
        outputs_M1 = self._predict_M1(
            df.A1,
            df.A2,
            df.A3,
            df.A4,
        )
        df["M1"] = outputs_M1["predictions"]
        df["M1_proba"] = outputs_M1["predictions_proba"]

        # Force Blank lines to 0
        df.loc[df.BLANK_LINE, "M1"] = 0

        # Train and predict M2
        df_endlines = df.loc[df.END_LINE]
        self._fit_M2(B1=df_endlines.B1, B2=df_endlines.B2, label=df_endlines.M1)
        outputs_M2 = self._predict_M2(B1=df_endlines.B1, B2=df_endlines.B2)

        df.loc[df.END_LINE, "M2"] = outputs_M2["predictions"]
        df.loc[df.END_LINE, "M2_proba"] = outputs_M2["predictions_proba"]

        df["M2"] = df["M2"].astype(
            pd.Int64Dtype()
        )  # cast to pd.Int64Dtype cause there are None values

        # M1M2
        df = df.loc[df.END_LINE]
        df["M1M2_lr"] = (df["M2_proba"] / (1 - df["M2_proba"])) * (
            df["M1_proba"] / (1 - df["M1_proba"])
        )
        df["M1M2"] = (df["M1M2_lr"] > 1).astype("int")

        # Force Blank lines to 0
        df.loc[df.BLANK_LINE, ["M2", "M1M2"]] = 0

        # Make binary col
        df["PREDICTED_END_LINE"] = np.logical_not(df["M1M2"].astype(bool))

        return df

    def predict(self, df: pd.DataFrame) -> pd.DataFrame:
        """Use the model for inference

        The df should have the following columns:
        `["A1","A2","A3","A4","B1","B2","BLANK_LINE"]`

        Parameters
        ----------
        df : pd.DataFrame
            The df should have the following columns:
            `["A1","A2","A3","A4","B1","B2","BLANK_LINE"]`

        Returns
        -------
        pd.DataFrame
            The result is added to the column `PREDICTED_END_LINE`
        """

        df = self._convert_raw_data_to_codes(df)

        outputs_M1 = self._predict_M1(df.A1, df.A2, df._A3, df._A4)
        df["M1"] = outputs_M1["predictions"]
        df["M1_proba"] = outputs_M1["predictions_proba"]

        outputs_M2 = self._predict_M2(B1=df._B1, B2=df._B2)
        df["M2"] = outputs_M2["predictions"]
        df["M2_proba"] = outputs_M2["predictions_proba"]
        df["M2"] = df["M2"].astype(
            pd.Int64Dtype()
        )  # cast to pd.Int64Dtype cause there are None values

        # M1M2
        df["M1M2_lr"] = (df["M2_proba"] / (1 - df["M2_proba"])) * (
            df["M1_proba"] / (1 - df["M1_proba"])
        )
        df["M1M2"] = (df["M1M2_lr"] > 1).astype("int")

        # Force Blank lines to 0
        df.loc[
            df.BLANK_LINE,
            [
                "M1M2",
            ],
        ] = 0

        # Make binary col
        df["PREDICTED_END_LINE"] = np.logical_not(df["M1M2"].astype(bool))

        return df

    def save(self, path="base_model.pkl"):
        """Save a pickle of the model. It could be read by the pipeline later.

        Parameters
        ----------
        path : str, optional
            path to file .pkl, by default `base_model.pkl`
        """
        with open(path, "wb") as outp:
            del self.nlp
            pickle.dump(self, outp, pickle.HIGHEST_PROTOCOL)

    def _convert_A(self, df: pd.DataFrame, col: str) -> pd.DataFrame:
        """
        Parameters
        ----------
        df : pd.DataFrame
        col : str
            column to translate

        Returns
        -------
        pd.DataFrame
        """
        cat_type_A = CategoricalDtype(
            categories=self.vocabulary["A3A4"].keys(), ordered=True
        )
        new_col = "_" + col
        df[new_col] = df[col].astype(cat_type_A)
        df[new_col] = df[new_col].cat.codes
        # Ensure that not known values are coded as OTHER
        df.loc[
            ~df[col].isin(self.vocabulary["A3A4"].keys()), new_col
        ] = self.vocabulary["A3A4"]["OTHER"]
        return df

    def _convert_B(self, df: pd.DataFrame, col: str) -> pd.DataFrame:
        """
        Parameters
        ----------
        df : pd.DataFrame
            [description]
        col : str
            column to translate

        Returns
        -------
        pd.DataFrame
            [description]
        """
        # Translate B1
        index_B = pd.IntervalIndex(list(self.vocabulary[col].keys()))
        new_col = "_" + col
        df[new_col] = pd.cut(df[col], index_B)
        df[new_col] = df[new_col].cat.codes
        df.loc[df[col] >= index_B.right.max(), new_col] = max(
            self.vocabulary[col].values()
        )
        df.loc[df[col] <= index_B.left.min(), new_col] = min(
            self.vocabulary[col].values()
        )

        return df

    def _convert_raw_data_to_codes(self, df: pd.DataFrame) -> pd.DataFrame:
        """
        Function to translate data as extracted from spacy to the model codes.
        `A1` and `A2` are not translated cause are supposed to be already
        in good encoding.

        Parameters
        ----------
        df : pd.DataFrame
            It should have columns `['A3','A4','B1','B2']`

        Returns
        -------
        pd.DataFrame
        """
        df = self._convert_A(df, "A3")
        df = self._convert_A(df, "A4")
        df = self._convert_B(df, "B1")
        df = self._convert_B(df, "B2")
        return df

    def _convert_line_to_attribute(
        self, df: pd.DataFrame, expr: str, col: str
    ) -> pd.DataFrame:
        """
        Function to convert a line into an attribute (column) of the
        previous row. Particularly we use it to identify "\\n" and "\\n\\n"
        that are considered tokens, express this information as an attribute
        of the previous token.

        Parameters
        ----------
        df : pd.DataFrame
        expr : str
            pattern to search in the text. Ex.: "\\n"
        col : str
            name of the new column

        Returns
        -------
        pd.DataFrame
        """
        idx = df.TEXT.str.contains(expr)
        df.loc[idx, col] = True
        df[col] = df[col].fillna(False)
        df = self._shift_col(df, col, "TEMP_" + col, direction="backward")

        return df

    def _compute_a3(self, df: pd.DataFrame) -> pd.DataFrame:
        """
        A3 (A4 respectively): typographic form  of left word (or right) :

        - All in capital letter
        - It starts with a capital letter
        - Starts by lowercase
        - It's a number
        - Strong punctuation
        - Soft punctuation
        - A number followed or preced by a punctuation (it's the case of enumerations)

        Parameters
        ----------
        df: pd.DataFrame

        Returns
        -------
        df: pd.DataFrame with the columns `A3` and `A3_`

        """
        df = self._shift_col(
            df, "IS_PUNCT", "IS_PUNCT_+1", direction="backward", fill=False
        )
        df = self._shift_col(
            df, "IS_PUNCT", "IS_PUNCT_-1", direction="forward", fill=False
        )

        CONDITION1 = df.IS_UPPER
        CONDITION2 = df.SHAPE_.str.startswith("Xx", na=False)
        CONDITION3 = df.SHAPE_.str.startswith("x", na=False)
        CONDITION4 = df.IS_DIGIT
        STRONG_PUNCT = [".", ";", "..", "..."]
        CONDITION5 = (df.IS_PUNCT) & (df.TEXT.isin(STRONG_PUNCT))
        CONDITION6 = (df.IS_PUNCT) & (~df.TEXT.isin(STRONG_PUNCT))
        CONDITION7 = (df.IS_DIGIT) & (df["IS_PUNCT_+1"] | df["IS_PUNCT_-1"])  # discuss

        df["A3_"] = None
        df.loc[CONDITION1, "A3_"] = "UPPER"
        df.loc[CONDITION2, "A3_"] = "S_UPPER"
        df.loc[CONDITION3, "A3_"] = "LOWER"
        df.loc[CONDITION4, "A3_"] = "DIGIT"
        df.loc[CONDITION5, "A3_"] = "STRONG_PUNCT"
        df.loc[CONDITION6, "A3_"] = "SOFT_PUNCT"
        df.loc[CONDITION7, "A3_"] = "ENUMERATION"

        df = df.drop(columns=["IS_PUNCT_+1", "IS_PUNCT_-1"])
        df["A3_"] = df["A3_"].astype("category")

        df["A3_"] = df["A3_"].cat.add_categories("OTHER")
        df["A3_"].fillna("OTHER", inplace=True)

        df["A3"] = df["A3_"].cat.codes

        return df

    def _fit_M1(
        self,
        A1: pd.Series,
        A2: pd.Series,
        A3: pd.Series,
        A4: pd.Series,
        label: pd.Series,
    ):
        """Function to train M1 classifier (Naive Bayes)

        Parameters
        ----------
        A1 : pd.Series
            [description]
        A2 : pd.Series
            [description]
        A3 : pd.Series
            [description]
        A4 : pd.Series
            [description]
        label : pd.Series
            [description]

        """
        # Encode classes to OneHotEncoder representation
        encoder_A1_A2 = self._fit_encoder_2S(A1, A2)
        self.encoder_A1_A2 = encoder_A1_A2

        encoder_A3_A4 = self._fit_encoder_2S(A3, A4)
        self.encoder_A3_A4 = encoder_A3_A4

        # M1
        m1 = MultinomialNB(alpha=1)

        X = self._get_X_for_M1(A1, A2, A3, A4)
        m1.fit(X, label)
        self.m1 = m1

    def _fit_M2(self, B1: pd.Series, B2: pd.Series, label: pd.Series):
        """Function to train M2 classifier (Naive Bayes)

        Parameters
        ----------
        B1 : pd.Series
        B2 : pd.Series
        label : pd.Series
        """

        # Encode classes to OneHotEncoder representation
        encoder_B1 = self._fit_encoder_1S(B1)
        self.encoder_B1 = encoder_B1
        encoder_B2 = self._fit_encoder_1S(B2)
        self.encoder_B2 = encoder_B2

        # Multinomial Naive Bayes
        m2 = MultinomialNB(alpha=1)
        X = self._get_X_for_M2(B1, B2)
        m2.fit(X, label)
        self.m2 = m2

    def _get_X_for_M1(
        self, A1: pd.Series, A2: pd.Series, A3: pd.Series, A4: pd.Series
    ) -> np.ndarray:
        """Get X matrix for classifier

        Parameters
        ----------
        A1 : pd.Series
        A2 : pd.Series
        A3 : pd.Series
        A4 : pd.Series

        Returns
        -------
        np.ndarray
        """
        A1_enc = self._encode_series(self.encoder_A1_A2, A1)
        A2_enc = self._encode_series(self.encoder_A1_A2, A2)
        A3_enc = self._encode_series(self.encoder_A3_A4, A3)
        A4_enc = self._encode_series(self.encoder_A3_A4, A4)
        X = hstack([A1_enc, A2_enc, A3_enc, A4_enc])
        return X

    def _get_X_for_M2(self, B1: pd.Series, B2: pd.Series) -> np.ndarray:
        """Get X matrix for classifier

        Parameters
        ----------
        B1 : pd.Series
        B2 : pd.Series

        Returns
        -------
        np.ndarray
        """
        B1_enc = self._encode_series(self.encoder_B1, B1)
        B2_enc = self._encode_series(self.encoder_B2, B2)
        X = hstack([B1_enc, B2_enc])
        return X

    def _predict_M1(
        self, A1: pd.Series, A2: pd.Series, A3: pd.Series, A4: pd.Series
    ) -> Dict[str, Any]:
        """Use M1 for prediction

        Parameters
        ----------
        A1 : pd.Series
        A2 : pd.Series
        A3 : pd.Series
        A4 : pd.Series

        Returns
        -------
        Dict[str, Any]
        """
        X = self._get_X_for_M1(A1, A2, A3, A4)
        predictions = self.m1.predict(X)
        predictions_proba = self.m1.predict_proba(X)[:, 1]
        outputs = {"predictions": predictions, "predictions_proba": predictions_proba}
        return outputs

    def _predict_M2(self, B1: pd.Series, B2: pd.Series) -> Dict[str, Any]:
        """Use M2 for prediction

        Parameters
        ----------
        B1 : pd.Series
        B2 : pd.Series

        Returns
        -------
        Dict[str, Any]
        """
        X = self._get_X_for_M2(B1, B2)
        predictions = self.m2.predict(X)
        predictions_proba = self.m2.predict_proba(X)[:, 1]
        outputs = {"predictions": predictions, "predictions_proba": predictions_proba}
        return outputs

    def _fit_encoder_2S(self, S1: pd.Series, S2: pd.Series) -> OneHotEncoder:
        """Fit a one hot encoder with 2 Series. It concatenates the series and after it fits.

        Parameters
        ----------
        S1 : pd.Series
        S2 : pd.Series

        Returns
        -------
        OneHotEncoder
        """
        _S1 = _convert_series_to_array(S1)
        _S2 = _convert_series_to_array(S2)
        S = np.concatenate([_S1, _S2])
        encoder = self._fit_one_hot_encoder(S)
        return encoder

    def _fit_encoder_1S(self, S1: pd.Series) -> OneHotEncoder:
        """Fit a one hot encoder with 1 Series.

        Parameters
        ----------
        S1 : pd.Series

        Returns
        -------
        OneHotEncoder
        """
        _S1 = _convert_series_to_array(S1)
        encoder = self._fit_one_hot_encoder(_S1)
        return encoder

    def _encode_series(self, encoder: OneHotEncoder, S: pd.Series) -> np.ndarray:
        """Use the one hot encoder to transform a series.

        Parameters
        ----------
        encoder : OneHotEncoder
        S : pd.Series
            a series to encode (transform)

        Returns
        -------
        np.ndarray
        """
        _S = _convert_series_to_array(S)
        S_enc = encoder.transform(_S)
        return S_enc

    @classmethod
    def _retrieve_lines(cls, dfg: DataFrameGroupBy) -> DataFrameGroupBy:
        """Function to give a sentence_id to each token.

        Parameters
        ----------
        dfg : DataFrameGroupBy

        Returns
        -------
        DataFrameGroupBy
            Same DataFrameGroupBy with the column `SENTENCE_ID`
        """
        sentences_ids = np.arange(dfg.END_LINE.sum())
        dfg.loc[dfg.END_LINE, "SENTENCE_ID"] = sentences_ids
        dfg["SENTENCE_ID"] = dfg["SENTENCE_ID"].fillna(method="bfill")
        return dfg

    @classmethod
    def _create_vocabulary(cls, x: iterable) -> dict:
        """Function to create a vocabulary for attributes in the training set.

        Parameters
        ----------
        x : iterable

        Returns
        -------
        dict
        """
        v = {}

        for i, key in enumerate(x):
            v[key] = i

        return v

    @classmethod
    def _compute_B(cls, df: pd.DataFrame) -> pd.DataFrame:
        """Function to compute B1 and B2

        Parameters
        ----------
        df : pd.DataFrame

        Returns
        -------
        pd.DataFrame
        """

        data = df.groupby(["DOC_ID", "SENTENCE_ID"]).agg(l=("LENGTH", "sum"))
        df_t = df.loc[df.END_LINE, ["DOC_ID", "SENTENCE_ID"]].merge(
            data, left_on=["DOC_ID", "SENTENCE_ID"], right_index=True, how="left"
        )

        stats_doc = df_t.groupby("DOC_ID").agg(mu=("l", "mean"), sigma=("l", "std"))
        stats_doc["sigma"].replace(
            0.0, 1.0, inplace=True
        )  # Replace the 0 std by unit std, otherwise it breaks the code.
        stats_doc["cv"] = stats_doc["sigma"] / stats_doc["mu"]

        df_t = df_t.drop(columns=["DOC_ID", "SENTENCE_ID"])
        df2 = df.merge(df_t, left_index=True, right_index=True, how="left")

        df2 = df2.merge(stats_doc, on=["DOC_ID"], how="left")
        df2["l_norm"] = (df2["l"] - df2["mu"]) / df2["sigma"]

        df2["cv_bin"] = pd.cut(df2["cv"], bins=10)
        df2["B2"] = df2["cv_bin"].cat.codes

        df2["l_norm_bin"] = pd.cut(df2["l_norm"], bins=10)
        df2["B1"] = df2["l_norm_bin"].cat.codes

        return df2

    @classmethod
    def _shift_col(
        cls, df: pd.DataFrame, col: str, new_col: str, direction="backward", fill=None
    ) -> pd.DataFrame:
        """Shifts a column one position into backward / forward direction.

        Parameters
        ----------
        df : pd.DataFrame
        col : str
            column to shift
        new_col : str
            column name to save the results
        direction : str, optional
            one of {"backward", "forward"}, by default "backward"
        fill : [type], optional
            , by default None

        Returns
        -------
        pd.DataFrame
            same df with `new_col` added.
        """
        df[new_col] = fill

        if direction == "backward":
            df.loc[df.index[:-1], new_col] = df[col].values[1:]

            different_doc_id = df["DOC_ID"].values[:-1] != df["DOC_ID"].values[1:]
            different_doc_id = np.append(different_doc_id, True)

        if direction == "forward":
            df.loc[df.index[1:], new_col] = df[col].values[:-1]
            different_doc_id = df["DOC_ID"].values[1:] != df["DOC_ID"].values[:-1]
            different_doc_id = np.append(True, different_doc_id)

        df.loc[different_doc_id, new_col] = fill
        return df

    @classmethod
    def _get_attributes(cls, doc: Doc, i=0):
        """Function to get the attributes of tokens of a spacy doc in a pd.DataFrame format.

        Parameters
        ----------
        doc : Doc
            spacy Doc
        i : int, optional
            document id, by default 0

        Returns
        -------
        pd.DataFrame
            Returns a dataframe with one line per token. It has the following columns :
            `[
            "ORTH",
            "LOWER",
            "SHAPE",
            "IS_DIGIT",
            "IS_SPACE",
            "IS_UPPER",
            "IS_PUNCT",
            "LENGTH",
            ]`
        """
        attributes = [
            "ORTH",
            "LOWER",
            "SHAPE",
            "IS_DIGIT",
            "IS_SPACE",
            "IS_UPPER",
            "IS_PUNCT",
            "LENGTH",
        ]
        attributes_array = doc.to_array(attributes)
        attributes_df = pd.DataFrame(attributes_array, columns=attributes)
        attributes_df["DOC_ID"] = i
        boolean_attr = []
        for a in attributes:
            if a[:3] == "IS_":
                boolean_attr.append(a)
        attributes_df[boolean_attr] = attributes_df[boolean_attr].astype("boolean")
        return attributes_df

    @classmethod
    def _get_string(cls, _id: int, string_store: StringStore) -> str:
        """Returns the string corresponding to the token_id

        Parameters
        ----------
        _id : int
            token id
        string_store : StringStore
            spaCy Language String Store

        Returns
        -------
        str
            string representation of the token.
        """
        return string_store[_id]

    @classmethod
    def _fit_one_hot_encoder(cls, X: np.ndarray) -> OneHotEncoder:
        """Fit a one hot encoder.

        Parameters
        ----------
        X : np.ndarray
            of shape (n,1)

        Returns
        -------
        OneHotEncoder
        """
        encoder = OneHotEncoder(handle_unknown="ignore")
        encoder.fit(X)
        return encoder

fit_and_predict(corpus)

Fit the model and predict for the training data

PARAMETER DESCRIPTION
corpus

An iterable of Documents

TYPE: Iterable[Doc]

RETURNS DESCRIPTION
pd.DataFrame

one line by end_line prediction

Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def fit_and_predict(self, corpus: Iterable[Doc]) -> pd.DataFrame:
    """Fit the model and predict for the training data

    Parameters
    ----------
    corpus : Iterable[Doc]
        An iterable of Documents

    Returns
    -------
    pd.DataFrame
        one line by end_line prediction
    """

    # Preprocess data to have a pd DF
    df = self._preprocess_data(corpus)

    # Train and predict M1
    self._fit_M1(df.A1, df.A2, df.A3, df.A4, df.SPACE)
    outputs_M1 = self._predict_M1(
        df.A1,
        df.A2,
        df.A3,
        df.A4,
    )
    df["M1"] = outputs_M1["predictions"]
    df["M1_proba"] = outputs_M1["predictions_proba"]

    # Force Blank lines to 0
    df.loc[df.BLANK_LINE, "M1"] = 0

    # Train and predict M2
    df_endlines = df.loc[df.END_LINE]
    self._fit_M2(B1=df_endlines.B1, B2=df_endlines.B2, label=df_endlines.M1)
    outputs_M2 = self._predict_M2(B1=df_endlines.B1, B2=df_endlines.B2)

    df.loc[df.END_LINE, "M2"] = outputs_M2["predictions"]
    df.loc[df.END_LINE, "M2_proba"] = outputs_M2["predictions_proba"]

    df["M2"] = df["M2"].astype(
        pd.Int64Dtype()
    )  # cast to pd.Int64Dtype cause there are None values

    # M1M2
    df = df.loc[df.END_LINE]
    df["M1M2_lr"] = (df["M2_proba"] / (1 - df["M2_proba"])) * (
        df["M1_proba"] / (1 - df["M1_proba"])
    )
    df["M1M2"] = (df["M1M2_lr"] > 1).astype("int")

    # Force Blank lines to 0
    df.loc[df.BLANK_LINE, ["M2", "M1M2"]] = 0

    # Make binary col
    df["PREDICTED_END_LINE"] = np.logical_not(df["M1M2"].astype(bool))

    return df

predict(df)

Use the model for inference

The df should have the following columns: ["A1","A2","A3","A4","B1","B2","BLANK_LINE"]

PARAMETER DESCRIPTION
df

The df should have the following columns: ["A1","A2","A3","A4","B1","B2","BLANK_LINE"]

TYPE: pd.DataFrame

RETURNS DESCRIPTION
pd.DataFrame

The result is added to the column PREDICTED_END_LINE

Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
def predict(self, df: pd.DataFrame) -> pd.DataFrame:
    """Use the model for inference

    The df should have the following columns:
    `["A1","A2","A3","A4","B1","B2","BLANK_LINE"]`

    Parameters
    ----------
    df : pd.DataFrame
        The df should have the following columns:
        `["A1","A2","A3","A4","B1","B2","BLANK_LINE"]`

    Returns
    -------
    pd.DataFrame
        The result is added to the column `PREDICTED_END_LINE`
    """

    df = self._convert_raw_data_to_codes(df)

    outputs_M1 = self._predict_M1(df.A1, df.A2, df._A3, df._A4)
    df["M1"] = outputs_M1["predictions"]
    df["M1_proba"] = outputs_M1["predictions_proba"]

    outputs_M2 = self._predict_M2(B1=df._B1, B2=df._B2)
    df["M2"] = outputs_M2["predictions"]
    df["M2_proba"] = outputs_M2["predictions_proba"]
    df["M2"] = df["M2"].astype(
        pd.Int64Dtype()
    )  # cast to pd.Int64Dtype cause there are None values

    # M1M2
    df["M1M2_lr"] = (df["M2_proba"] / (1 - df["M2_proba"])) * (
        df["M1_proba"] / (1 - df["M1_proba"])
    )
    df["M1M2"] = (df["M1M2_lr"] > 1).astype("int")

    # Force Blank lines to 0
    df.loc[
        df.BLANK_LINE,
        [
            "M1M2",
        ],
    ] = 0

    # Make binary col
    df["PREDICTED_END_LINE"] = np.logical_not(df["M1M2"].astype(bool))

    return df

save(path='base_model.pkl')

Save a pickle of the model. It could be read by the pipeline later.

PARAMETER DESCRIPTION
path

path to file .pkl, by default base_model.pkl

TYPE: str, optional DEFAULT: 'base_model.pkl'

Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
213
214
215
216
217
218
219
220
221
222
223
def save(self, path="base_model.pkl"):
    """Save a pickle of the model. It could be read by the pipeline later.

    Parameters
    ----------
    path : str, optional
        path to file .pkl, by default `base_model.pkl`
    """
    with open(path, "wb") as outp:
        del self.nlp
        pickle.dump(self, outp, pickle.HIGHEST_PROTOCOL)