16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231 | class EndLines(GenericMatcher):
"""
spaCy Pipeline to detect whether a newline character should
be considered a space (ie introduced by the PDF).
The pipeline will add the extension `end_line` to spans
and tokens. The `end_line` attribute is a boolean or `None`,
set to `True` if the pipeline predicts that the new line
is an end line character. Otherwise, it is set to `False`
if the new line is classified as a space. If no classification
has been done over that token, it will remain `None`.
Parameters
----------
nlp : Language
spaCy nlp pipeline to use for matching.
end_lines_model : Optional[Union[str, EndLinesModel]], by default None
path to trained model. If None, it will use a default model
"""
def __init__(
self,
nlp: Language,
end_lines_model: Optional[Union[str, EndLinesModel]],
**kwargs,
):
super().__init__(
nlp,
terms=None,
attr="TEXT",
regex=dict(
new_line=r"\n+",
),
ignore_excluded=False,
ignore_space_tokens=False,
**kwargs,
)
self._read_model(end_lines_model)
def _read_model(self, end_lines_model: Optional[Union[str, EndLinesModel]]):
"""
Parameters
----------
end_lines_model : Optional[Union[str, EndLinesModel]]
Raises
------
TypeError
"""
if end_lines_model is None:
path = build_path(__file__, "base_model.pkl")
with open(path, "rb") as inp:
self.model = pickle.load(inp)
elif type(end_lines_model) == str:
with open(end_lines_model, "rb") as inp:
self.model = pickle.load(inp)
elif type(end_lines_model) == EndLinesModel:
self.model = end_lines_model
else:
raise TypeError(
"type(`end_lines_model`) should be one of {None, str, EndLinesModel}"
)
@classmethod
def _spacy_compute_a3a4(cls, token: Token) -> str:
"""Function to compute A3 and A4
Parameters
----------
token : Token
Returns
-------
str
"""
if token.is_upper:
return "UPPER"
elif token.shape_.startswith("Xx"):
return "S_UPPER"
elif token.shape_.startswith("x"):
return "LOWER"
elif (token.is_digit) & (
(token.doc[max(token.i - 1, 0)].is_punct)
| (token.doc[min(token.i + 1, len(token.doc) - 1)].is_punct)
):
return "ENUMERATION"
elif token.is_digit:
return "DIGIT"
elif (token.is_punct) & (token.text in [".", ";", "..", "..."]):
return "STRONG_PUNCT"
elif (token.is_punct) & (token.text not in [".", ";", "..", "..."]):
return "SOFT_PUNCT"
else:
return "OTHER"
@classmethod
def _compute_length(cls, doc: Doc, start: int, end: int) -> int:
"""Compute length without spaces
Parameters
----------
doc : Doc
start : int
end : int
Returns
-------
int
"""
length = 0
for t in doc[start:end]:
length += len(t.text)
return length
def _get_df(self, doc: Doc, new_lines: List[Span]) -> pd.DataFrame:
"""Get a pandas DataFrame to call the classifier
Parameters
----------
doc : Doc
new_lines : List[Span]
Returns
-------
pd.DataFrame
"""
data = []
for i, span in enumerate(new_lines):
start = span.start
end = span.end
max_index = len(doc) - 1
a1_token = doc[max(start - 1, 0)]
a2_token = doc[min(start + 1, max_index)]
a1 = a1_token.orth
a2 = a2_token.orth
a3 = self._spacy_compute_a3a4(a1_token)
a4 = self._spacy_compute_a3a4(a2_token)
blank_line = "\n\n" in span.text
if i > 0:
start_previous = new_lines[i - 1].start + 1
else:
start_previous = 0
length = self._compute_length(
doc, start=start_previous, end=start
) # It's ok cause i count the total length from the previous up to this one
data_dict = dict(
span_start=start,
span_end=end,
A1=a1,
A2=a2,
A3=a3,
A4=a4,
BLANK_LINE=blank_line,
length=length,
)
data.append(data_dict)
df = pd.DataFrame(data)
mu = df["length"].mean()
sigma = df["length"].std()
if np.isnan(sigma):
sigma = 1
cv = sigma / mu
df["B1"] = (df["length"] - mu) / sigma
df["B2"] = cv
return df
def __call__(self, doc: Doc) -> Doc:
"""
Predict for each new line if it's an end of line or a space.
Parameters
----------
doc: spaCy Doc object
Returns
-------
doc: spaCy Doc object, with each new line annotated
"""
matches = self.process(doc)
new_lines = get_spans(matches, "new_line")
if len(new_lines) > 0:
df = self._get_df(doc=doc, new_lines=new_lines)
df = self.model.predict(df)
for span, prediction in zip(new_lines, df.PREDICTED_END_LINE):
for t in span:
t.tag_ = "ENDLINE" if prediction else "EXCLUDED"
if prediction:
t._.excluded = True
return doc
|