Skip to content

edsnlp.pipelines.trainable.span_qualifier.span_qualifier

TrainableSpanQualifier

Bases: TrainablePipe

Create a generic span classification component

Source code in edsnlp/pipelines/trainable/span_qualifier/span_qualifier.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
class TrainableSpanQualifier(TrainablePipe):
    """Create a generic span classification component"""

    def __init__(
        self,
        vocab: Vocab,
        model: Model,
        candidate_getter: Callable[
            [Doc], Tuple[Spans, Optional[Spans], SpanGroups, List[List[str]]]
        ],
        name: str = "span_qualifier",
        scorer: Optional[Callable] = None,
    ) -> None:
        """
        Parameters
        ----------
        vocab: Vocab
            Spacy vocabulary
        model: Model
            The model to extract the spans
        name: str
            Name of the component
        candidate_getter: Callable[[Doc], Tuple[Spans, Optional[Spans], SpanGroups, List[List[str]]]]
            Method to call to extract the candidate spans and the qualifiers
            to predict or train on.
        scorer: Optional[Callable]
            Method to call to score predictions
        """  # noqa: E501

        super().__init__(vocab, model, name)

        self.cfg["qualifiers"]: Optional[Tuple[str]] = ()
        self.candidate_getter = candidate_getter

        self.bindings: List[Binding] = []
        self.ner_labels_indices: Optional[Dict[str, int]] = None

        if scorer is None:
            self.scorer = make_span_qualifier_scorer(candidate_getter)
        else:
            self.scorer = scorer

    def to_disk(self, path, *, exclude=tuple()):
        # This will receive the directory path + /my_component
        super().to_disk(path, exclude=exclude)
        data_path = path / "data.pkl"
        with open(data_path, "wb") as f:
            pickle.dump(
                {
                    "bindings": self.bindings,
                },
                f,
            )

    def from_disk(self, path, exclude=tuple()):
        super().from_disk(path, exclude=exclude)
        # This will receive the directory path + /my_component
        data_path = path / "data.pkl"
        with open(data_path, "rb") as f:
            data = pickle.load(f)
        self.bindings = data["bindings"]
        return self

    @property
    def qualifiers(self) -> Tuple[str]:
        """Return the qualifiers predicted by the component"""
        return self.cfg["qualifiers"]

    @property
    def labels(self) -> List[str]:
        return ["{}={}".format(a, b) for a, b in self.bindings]

    def add_label(self, label: str) -> int:
        """Add a new label to the pipe."""
        raise Exception("Cannot add a new label to the pipe")

    def predict(
        self, docs: List[Doc]
    ) -> Tuple[
        Dict[str, Ints2d],
        Spans,
        List[Optional[Spans]],
        List[SpanGroups],
        List[List[str]],
    ]:
        """
        Apply the pipeline's model to a batch of docs, without modifying them.

        Parameters
        ----------
        docs: List[Doc]

        Returns
        -------
        # noqa: E501
        Tuple[Dict[str, Ints2d], Spans, List[Spans], List[SpanGroups], List[List[str]]]
            The predicted list of 1-hot label sequence as a tensor
            that represent the labels of spans for all the batch,
            the list of all spans, and the span groups and ents in case the "label_"
            qualifier is updated
        """
        spans, ents, span_groups, spans_qlf, spans_array = self._get_span_data(docs)

        return (
            self.model.predict(
                (
                    docs,
                    self.model.ops.asarray(spans_array),
                    None,
                    True,
                )
            )[1],
            spans,
            ents,
            span_groups,
            spans_qlf,
        )

    def set_annotations(
        self,
        docs: List[Doc],
        predictions: Tuple[
            Dict[str, Ints2d],
            Spans,
            List[Optional[Spans]],
            List[SpanGroups],
            List[List[str]],
        ],
        **kwargs,
    ) -> None:
        """
        Modify the spans of a batch of `spacy.tokens.Span` objects, using the
        predicted labels.

        # noqa: E501
        Parameters
        ----------
        docs: List[Doc]
            The docs to update, not used in this function
        predictions: Tuple[Dict[str, Ints2d], Spans, List[SpanGroups], List[Optional[Spans]]]
            Tuple returned by the `predict` method, containing:
            - the label predictions. This is a 2d boolean tensor of shape
              (`batch_size`, `len(self.bindings)`)
            - the spans to update
            - the ents to reassign if the "label_" qualifier is updated
            - the span groups dicts to reassign if the "label_" qualifier is updated
            - the qualifiers for each span
        """
        output, spans, ents, span_groups, spans_qlf = predictions
        one_hot = output["labels"]
        for span, span_one_hot, span_qualifiers in zip(spans, one_hot, spans_qlf):
            for binding, is_present in zip(self.bindings, span_one_hot):
                if is_present and binding[0] in span_qualifiers:
                    BINDING_SETTERS[binding](span)

        # Because of the specific nature of the ".label_" attribute, we need to
        # reassign the ents on `doc.ents` (if `span_getter.from_ents`) and the spans
        # groups mentioned in `span_getter.from_spans_groups` on `doc.spans`
        if "label_" in self.qualifiers or "label" in self.qualifiers:
            if ents is not None:
                for doc, doc_ents in zip(docs, ents):
                    if doc_ents is not None:
                        doc.ents = doc_ents
            if span_groups is not None:
                for doc, doc_span_groups in zip(docs, span_groups):
                    doc.spans.update(doc_span_groups)

    def update(
        self,
        examples: Iterable[Example],
        *,
        drop: float = 0.0,
        set_annotations: bool = False,
        sgd: Optional[Optimizer] = None,
        losses: Optional[Dict[str, float]] = None,
    ) -> Dict[str, float]:
        """
        Learn from a batch of documents and gold-standard information,
        updating the pipe's model. Delegates to begin_update and get_loss.

        Unlike standard TrainablePipe components, the discrete ops (best selection
        of labels) is performed by the model directly (`begin_update` returns the loss
        and the predictions)

        Parameters
        ----------
        examples: Iterable[Example]
        drop: float = 0.0

        set_annotations: bool
            Whether to update the document with predicted spans
        sgd: Optional[Optimizer]
            Optimizer
        losses: Optional[Dict[str, float]]
            Dict of loss, updated in place

        Returns
        -------
        Dict[str, float]
            Updated losses dict
        """

        if losses is None:
            losses = {}
        losses.setdefault(self.name, 0.0)
        set_dropout_rate(self.model, drop)
        examples = list(examples)

        # run the model
        docs = [eg.predicted for eg in examples]
        (
            spans,
            ents,
            span_groups,
            spans_qlf,
            spans_array,
            targets,
        ) = self.examples_to_truth(examples)
        (loss, predictions), backprop = self.model.begin_update(
            (docs, spans_array, targets, set_annotations)
        )
        loss, gradient = self.get_loss(examples, loss)
        backprop(gradient)
        if sgd is not None:
            self.model.finish_update(sgd)
        if set_annotations:
            self.set_annotations(
                spans,
                (
                    predictions,
                    spans,
                    ents,
                    span_groups,
                    spans_qlf,
                ),
            )

        losses[self.name] = loss

        return loss

    def get_loss(self, examples: Iterable[Example], loss) -> Tuple[float, float]:
        """Find the loss and gradient of loss for the batch of documents and
        their predicted scores."""
        return float(loss.item()), self.model.ops.xp.array([1])

    def initialize(
        self,
        get_examples: Callable[[], Iterable[Example]],
        *,
        nlp: Language = None,
        labels: Optional[List[str]] = None,
    ):
        """
        Initialize the pipe for training, using a representative set
        of data examples.

        Gather the qualifier values by iterating on the spans and their qualifiers
        matching the rules defined in the `candidate_getter`, and retrieving the
        values of the qualifiers.

        Parameters
        ----------
        get_examples: Callable[[], Iterable[Example]]
            Method to sample some examples
        nlp: spacy.Language
            Unused spacy model
        labels
            Unused list of labels
        """
        qualifier_values = defaultdict(set)
        for eg in get_examples():
            spans, *_, spans_qualifiers = self.candidate_getter(eg.reference)
            for span, span_qualifiers in zip(spans, spans_qualifiers):
                for qualifier in span_qualifiers:
                    value = BINDING_GETTERS[qualifier](span)
                    qualifier_values[qualifier].add(value)

        qualifier_values = {
            key: sorted(values, key=str) for key, values in qualifier_values.items()
        }

        self.cfg["qualifiers"] = sorted(qualifier_values.keys())
        # groups:
        #   num binding_groups (e.g. ["events", "negation"])
        # * num label combinations in this group
        # * positive labels in this combination
        self.cfg["groups"] = [
            [((key, value),) for value in sorted(values, key=str)]
            for key, values in qualifier_values.items()
        ]
        groups_bindings = [
            list(
                dict.fromkeys(
                    [
                        binding
                        for combination_bindings in group_combinations
                        for binding in combination_bindings
                    ]
                )
            )
            for group_combinations in self.cfg["groups"]
        ]
        self.bindings = [
            binding for group_bindings in groups_bindings for binding in group_bindings
        ]
        self.model.attrs["set_n_labels"](len(self.bindings))

        # combinations_one_hot: list of bool arrays of shape
        #   num binding_groups (e.g. ["events", "negation"])
        # * num bindings in this group (eg ["start", "stop"], [True, False])
        combinations_one_hot: List[List[List[bool]]] = [
            [
                [binding in combination_bindings for binding in group_bindings]
                for combination_bindings in group_combinations
            ]
            for group_combinations, group_bindings in zip(
                self.cfg["groups"], groups_bindings
            )
        ]
        # groups_indices:
        #   num binding_groups (e.g. ["events", "negation"])
        # * num label combinations in this group
        # * presence or absence (bool) of the bindings of this groups in the combination
        groups_bindings_indices = [
            [self.bindings.index(binding) for binding in group_bindings]
            for group_bindings in groups_bindings
        ]

        self.model.attrs["set_label_groups"](
            combinations_one_hot,
            groups_bindings_indices,
        )

        # Neural network initialization
        sub_batch = list(islice(get_examples(), NUM_INITIALIZATION_EXAMPLES))
        doc_sample = [eg.reference for eg in sub_batch]
        spans, *_, spans_array, targets = self.examples_to_truth(sub_batch)
        if len(spans) == 0:
            raise ValueError(
                "Call begin_training with relevant entities "
                "and relations annotated in "
                "at least a few reference examples!"
            )

        self.model.initialize(X=doc_sample, Y=spans_array)

    def _get_span_data(
        self, docs: List[Doc]
    ) -> Tuple[
        Spans,
        List[Optional[Spans]],
        List[SpanGroups],
        List[List[str]],
        np.ndarray,
    ]:
        spans = []
        ents, span_groups = [], []
        spans_qualifiers = []
        for doc_idx, doc in enumerate(docs):
            doc_spans, doc_ents, doc_span_groups, qlf = self.candidate_getter(doc)
            ents.append(doc_ents)
            span_groups.append(doc_span_groups)
            spans_qualifiers.extend(qlf)
            spans.extend([(doc_idx, span) for span in doc_spans])
        spans = list(spans)
        spans_array = np.zeros((len(spans), 3), dtype=int)
        for i, (doc_idx, span) in enumerate(spans):
            spans_array[i] = (
                doc_idx,
                span.start,
                span.end,
            )

        return (
            [span for i, span in spans],
            ents,
            span_groups,
            spans_qualifiers,
            spans_array,
        )

    def examples_to_truth(
        self, examples: List[Example]
    ) -> Tuple[
        Spans,
        List[Spans],
        List[SpanGroups],
        List[List[str]],
        Ints2d,
        List[Ints2d],
    ]:
        """

        Converts the spans of the examples into a list
        of (doc_idx, label_idx, begin, end) tuple as a tensor,
        and the labels of the spans into a list of 1-hot label sequence

        Parameters
        ----------
        examples: List[Example]

        Returns
        -------
        Tuple[Spans,List[Spans],List[SpanGroups],List[List[str]],Ints2d,List[Ints2d]]
            The list of spans, the spans tensor, the qualifiers tensor, and the
            list of entities and span groups to reassign them if the label_ attribute
            is part of the updated qualifiers
        """  # noqa E501
        spans, ents, span_groups, spans_qualifiers, spans_array = self._get_span_data(
            [eg.reference for eg in examples]
        )
        targets = [
            np.zeros((len(spans), len(group_combinations)), dtype=int)
            for group_combinations in self.cfg["groups"]
        ]
        for span_idx, span in enumerate(spans):
            span_bindings = []
            for j, binding in enumerate(self.bindings):
                if binding[0] in spans_qualifiers[span_idx] and BINDING_GETTERS[
                    binding
                ](span):
                    span_bindings.append(binding)
            for group_idx, group in enumerate(self.cfg["groups"]):
                for comb_idx, group_combination in enumerate(group):
                    if set(group_combination).issubset(set(span_bindings)):
                        targets[group_idx][span_idx, comb_idx] = 1

        return (
            spans,
            ents,
            span_groups,
            spans_qualifiers,
            self.model.ops.asarray(spans_array),
            [self.model.ops.asarray(arr) for arr in targets],
        )

qualifiers: Tuple[str] property

Return the qualifiers predicted by the component

__init__(vocab, model, candidate_getter, name='span_qualifier', scorer=None)

PARAMETER DESCRIPTION
vocab

Spacy vocabulary

TYPE: Vocab

model

The model to extract the spans

TYPE: Model

name

Name of the component

TYPE: str DEFAULT: 'span_qualifier'

candidate_getter

Method to call to extract the candidate spans and the qualifiers to predict or train on.

TYPE: Callable[[Doc], Tuple[Spans, Optional[Spans], SpanGroups, List[List[str]]]]

scorer

Method to call to score predictions

TYPE: Optional[Callable] DEFAULT: None

Source code in edsnlp/pipelines/trainable/span_qualifier/span_qualifier.py
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def __init__(
    self,
    vocab: Vocab,
    model: Model,
    candidate_getter: Callable[
        [Doc], Tuple[Spans, Optional[Spans], SpanGroups, List[List[str]]]
    ],
    name: str = "span_qualifier",
    scorer: Optional[Callable] = None,
) -> None:
    """
    Parameters
    ----------
    vocab: Vocab
        Spacy vocabulary
    model: Model
        The model to extract the spans
    name: str
        Name of the component
    candidate_getter: Callable[[Doc], Tuple[Spans, Optional[Spans], SpanGroups, List[List[str]]]]
        Method to call to extract the candidate spans and the qualifiers
        to predict or train on.
    scorer: Optional[Callable]
        Method to call to score predictions
    """  # noqa: E501

    super().__init__(vocab, model, name)

    self.cfg["qualifiers"]: Optional[Tuple[str]] = ()
    self.candidate_getter = candidate_getter

    self.bindings: List[Binding] = []
    self.ner_labels_indices: Optional[Dict[str, int]] = None

    if scorer is None:
        self.scorer = make_span_qualifier_scorer(candidate_getter)
    else:
        self.scorer = scorer

add_label(label)

Add a new label to the pipe.

Source code in edsnlp/pipelines/trainable/span_qualifier/span_qualifier.py
166
167
168
def add_label(self, label: str) -> int:
    """Add a new label to the pipe."""
    raise Exception("Cannot add a new label to the pipe")

predict(docs)

Apply the pipeline's model to a batch of docs, without modifying them.

PARAMETER DESCRIPTION
docs

TYPE: List[Doc]

RETURNS DESCRIPTION
Dict[str, Ints2d]
Tuple[Dict[str, Ints2d], Spans, List[Spans], List[SpanGroups], List[List[str]]]

The predicted list of 1-hot label sequence as a tensor that represent the labels of spans for all the batch, the list of all spans, and the span groups and ents in case the "label_" qualifier is updated

Source code in edsnlp/pipelines/trainable/span_qualifier/span_qualifier.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
def predict(
    self, docs: List[Doc]
) -> Tuple[
    Dict[str, Ints2d],
    Spans,
    List[Optional[Spans]],
    List[SpanGroups],
    List[List[str]],
]:
    """
    Apply the pipeline's model to a batch of docs, without modifying them.

    Parameters
    ----------
    docs: List[Doc]

    Returns
    -------
    # noqa: E501
    Tuple[Dict[str, Ints2d], Spans, List[Spans], List[SpanGroups], List[List[str]]]
        The predicted list of 1-hot label sequence as a tensor
        that represent the labels of spans for all the batch,
        the list of all spans, and the span groups and ents in case the "label_"
        qualifier is updated
    """
    spans, ents, span_groups, spans_qlf, spans_array = self._get_span_data(docs)

    return (
        self.model.predict(
            (
                docs,
                self.model.ops.asarray(spans_array),
                None,
                True,
            )
        )[1],
        spans,
        ents,
        span_groups,
        spans_qlf,
    )

set_annotations(docs, predictions, **kwargs)

Modify the spans of a batch of spacy.tokens.Span objects, using the predicted labels.

noqa: E501

PARAMETER DESCRIPTION
docs

The docs to update, not used in this function

TYPE: List[Doc]

predictions

Tuple returned by the predict method, containing: - the label predictions. This is a 2d boolean tensor of shape (batch_size, len(self.bindings)) - the spans to update - the ents to reassign if the "label_" qualifier is updated - the span groups dicts to reassign if the "label_" qualifier is updated - the qualifiers for each span

TYPE: Tuple[Dict[str, Ints2d], Spans, List[Optional[Spans]], List[SpanGroups], List[List[str]]]

Source code in edsnlp/pipelines/trainable/span_qualifier/span_qualifier.py
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
def set_annotations(
    self,
    docs: List[Doc],
    predictions: Tuple[
        Dict[str, Ints2d],
        Spans,
        List[Optional[Spans]],
        List[SpanGroups],
        List[List[str]],
    ],
    **kwargs,
) -> None:
    """
    Modify the spans of a batch of `spacy.tokens.Span` objects, using the
    predicted labels.

    # noqa: E501
    Parameters
    ----------
    docs: List[Doc]
        The docs to update, not used in this function
    predictions: Tuple[Dict[str, Ints2d], Spans, List[SpanGroups], List[Optional[Spans]]]
        Tuple returned by the `predict` method, containing:
        - the label predictions. This is a 2d boolean tensor of shape
          (`batch_size`, `len(self.bindings)`)
        - the spans to update
        - the ents to reassign if the "label_" qualifier is updated
        - the span groups dicts to reassign if the "label_" qualifier is updated
        - the qualifiers for each span
    """
    output, spans, ents, span_groups, spans_qlf = predictions
    one_hot = output["labels"]
    for span, span_one_hot, span_qualifiers in zip(spans, one_hot, spans_qlf):
        for binding, is_present in zip(self.bindings, span_one_hot):
            if is_present and binding[0] in span_qualifiers:
                BINDING_SETTERS[binding](span)

    # Because of the specific nature of the ".label_" attribute, we need to
    # reassign the ents on `doc.ents` (if `span_getter.from_ents`) and the spans
    # groups mentioned in `span_getter.from_spans_groups` on `doc.spans`
    if "label_" in self.qualifiers or "label" in self.qualifiers:
        if ents is not None:
            for doc, doc_ents in zip(docs, ents):
                if doc_ents is not None:
                    doc.ents = doc_ents
        if span_groups is not None:
            for doc, doc_span_groups in zip(docs, span_groups):
                doc.spans.update(doc_span_groups)

update(examples, *, drop=0.0, set_annotations=False, sgd=None, losses=None)

Learn from a batch of documents and gold-standard information, updating the pipe's model. Delegates to begin_update and get_loss.

Unlike standard TrainablePipe components, the discrete ops (best selection of labels) is performed by the model directly (begin_update returns the loss and the predictions)

PARAMETER DESCRIPTION
examples

TYPE: Iterable[Example]

drop

TYPE: float DEFAULT: 0.0

set_annotations: bool Whether to update the document with predicted spans sgd: Optional[Optimizer] Optimizer losses: Optional[Dict[str, float]] Dict of loss, updated in place

RETURNS DESCRIPTION
Dict[str, float]

Updated losses dict

Source code in edsnlp/pipelines/trainable/span_qualifier/span_qualifier.py
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
def update(
    self,
    examples: Iterable[Example],
    *,
    drop: float = 0.0,
    set_annotations: bool = False,
    sgd: Optional[Optimizer] = None,
    losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
    """
    Learn from a batch of documents and gold-standard information,
    updating the pipe's model. Delegates to begin_update and get_loss.

    Unlike standard TrainablePipe components, the discrete ops (best selection
    of labels) is performed by the model directly (`begin_update` returns the loss
    and the predictions)

    Parameters
    ----------
    examples: Iterable[Example]
    drop: float = 0.0

    set_annotations: bool
        Whether to update the document with predicted spans
    sgd: Optional[Optimizer]
        Optimizer
    losses: Optional[Dict[str, float]]
        Dict of loss, updated in place

    Returns
    -------
    Dict[str, float]
        Updated losses dict
    """

    if losses is None:
        losses = {}
    losses.setdefault(self.name, 0.0)
    set_dropout_rate(self.model, drop)
    examples = list(examples)

    # run the model
    docs = [eg.predicted for eg in examples]
    (
        spans,
        ents,
        span_groups,
        spans_qlf,
        spans_array,
        targets,
    ) = self.examples_to_truth(examples)
    (loss, predictions), backprop = self.model.begin_update(
        (docs, spans_array, targets, set_annotations)
    )
    loss, gradient = self.get_loss(examples, loss)
    backprop(gradient)
    if sgd is not None:
        self.model.finish_update(sgd)
    if set_annotations:
        self.set_annotations(
            spans,
            (
                predictions,
                spans,
                ents,
                span_groups,
                spans_qlf,
            ),
        )

    losses[self.name] = loss

    return loss

get_loss(examples, loss)

Find the loss and gradient of loss for the batch of documents and their predicted scores.

Source code in edsnlp/pipelines/trainable/span_qualifier/span_qualifier.py
335
336
337
338
def get_loss(self, examples: Iterable[Example], loss) -> Tuple[float, float]:
    """Find the loss and gradient of loss for the batch of documents and
    their predicted scores."""
    return float(loss.item()), self.model.ops.xp.array([1])

initialize(get_examples, *, nlp=None, labels=None)

Initialize the pipe for training, using a representative set of data examples.

Gather the qualifier values by iterating on the spans and their qualifiers matching the rules defined in the candidate_getter, and retrieving the values of the qualifiers.

PARAMETER DESCRIPTION
get_examples

Method to sample some examples

TYPE: Callable[[], Iterable[Example]]

nlp

Unused spacy model

TYPE: Language DEFAULT: None

labels

Unused list of labels

TYPE: Optional[List[str]] DEFAULT: None

Source code in edsnlp/pipelines/trainable/span_qualifier/span_qualifier.py
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
def initialize(
    self,
    get_examples: Callable[[], Iterable[Example]],
    *,
    nlp: Language = None,
    labels: Optional[List[str]] = None,
):
    """
    Initialize the pipe for training, using a representative set
    of data examples.

    Gather the qualifier values by iterating on the spans and their qualifiers
    matching the rules defined in the `candidate_getter`, and retrieving the
    values of the qualifiers.

    Parameters
    ----------
    get_examples: Callable[[], Iterable[Example]]
        Method to sample some examples
    nlp: spacy.Language
        Unused spacy model
    labels
        Unused list of labels
    """
    qualifier_values = defaultdict(set)
    for eg in get_examples():
        spans, *_, spans_qualifiers = self.candidate_getter(eg.reference)
        for span, span_qualifiers in zip(spans, spans_qualifiers):
            for qualifier in span_qualifiers:
                value = BINDING_GETTERS[qualifier](span)
                qualifier_values[qualifier].add(value)

    qualifier_values = {
        key: sorted(values, key=str) for key, values in qualifier_values.items()
    }

    self.cfg["qualifiers"] = sorted(qualifier_values.keys())
    # groups:
    #   num binding_groups (e.g. ["events", "negation"])
    # * num label combinations in this group
    # * positive labels in this combination
    self.cfg["groups"] = [
        [((key, value),) for value in sorted(values, key=str)]
        for key, values in qualifier_values.items()
    ]
    groups_bindings = [
        list(
            dict.fromkeys(
                [
                    binding
                    for combination_bindings in group_combinations
                    for binding in combination_bindings
                ]
            )
        )
        for group_combinations in self.cfg["groups"]
    ]
    self.bindings = [
        binding for group_bindings in groups_bindings for binding in group_bindings
    ]
    self.model.attrs["set_n_labels"](len(self.bindings))

    # combinations_one_hot: list of bool arrays of shape
    #   num binding_groups (e.g. ["events", "negation"])
    # * num bindings in this group (eg ["start", "stop"], [True, False])
    combinations_one_hot: List[List[List[bool]]] = [
        [
            [binding in combination_bindings for binding in group_bindings]
            for combination_bindings in group_combinations
        ]
        for group_combinations, group_bindings in zip(
            self.cfg["groups"], groups_bindings
        )
    ]
    # groups_indices:
    #   num binding_groups (e.g. ["events", "negation"])
    # * num label combinations in this group
    # * presence or absence (bool) of the bindings of this groups in the combination
    groups_bindings_indices = [
        [self.bindings.index(binding) for binding in group_bindings]
        for group_bindings in groups_bindings
    ]

    self.model.attrs["set_label_groups"](
        combinations_one_hot,
        groups_bindings_indices,
    )

    # Neural network initialization
    sub_batch = list(islice(get_examples(), NUM_INITIALIZATION_EXAMPLES))
    doc_sample = [eg.reference for eg in sub_batch]
    spans, *_, spans_array, targets = self.examples_to_truth(sub_batch)
    if len(spans) == 0:
        raise ValueError(
            "Call begin_training with relevant entities "
            "and relations annotated in "
            "at least a few reference examples!"
        )

    self.model.initialize(X=doc_sample, Y=spans_array)

examples_to_truth(examples)

Converts the spans of the examples into a list of (doc_idx, label_idx, begin, end) tuple as a tensor, and the labels of the spans into a list of 1-hot label sequence

PARAMETER DESCRIPTION
examples

TYPE: List[Example]

RETURNS DESCRIPTION
Tuple[Spans, List[Spans], List[SpanGroups], List[List[str]], Ints2d, List[Ints2d]]

The list of spans, the spans tensor, the qualifiers tensor, and the list of entities and span groups to reassign them if the label_ attribute is part of the updated qualifiers

Source code in edsnlp/pipelines/trainable/span_qualifier/span_qualifier.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
def examples_to_truth(
    self, examples: List[Example]
) -> Tuple[
    Spans,
    List[Spans],
    List[SpanGroups],
    List[List[str]],
    Ints2d,
    List[Ints2d],
]:
    """

    Converts the spans of the examples into a list
    of (doc_idx, label_idx, begin, end) tuple as a tensor,
    and the labels of the spans into a list of 1-hot label sequence

    Parameters
    ----------
    examples: List[Example]

    Returns
    -------
    Tuple[Spans,List[Spans],List[SpanGroups],List[List[str]],Ints2d,List[Ints2d]]
        The list of spans, the spans tensor, the qualifiers tensor, and the
        list of entities and span groups to reassign them if the label_ attribute
        is part of the updated qualifiers
    """  # noqa E501
    spans, ents, span_groups, spans_qualifiers, spans_array = self._get_span_data(
        [eg.reference for eg in examples]
    )
    targets = [
        np.zeros((len(spans), len(group_combinations)), dtype=int)
        for group_combinations in self.cfg["groups"]
    ]
    for span_idx, span in enumerate(spans):
        span_bindings = []
        for j, binding in enumerate(self.bindings):
            if binding[0] in spans_qualifiers[span_idx] and BINDING_GETTERS[
                binding
            ](span):
                span_bindings.append(binding)
        for group_idx, group in enumerate(self.cfg["groups"]):
            for comb_idx, group_combination in enumerate(group):
                if set(group_combination).issubset(set(span_bindings)):
                    targets[group_idx][span_idx, comb_idx] = 1

    return (
        spans,
        ents,
        span_groups,
        spans_qualifiers,
        self.model.ops.asarray(spans_array),
        [self.model.ops.asarray(arr) for arr in targets],
    )