edsnlp.pipelines.trainable.pytorch_wrapper
PytorchWrapperModule
Bases: torch.nn.Module
Source code in edsnlp/pipelines/trainable/pytorch_wrapper.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
__init__(input_size=None, n_labels=None)
Pytorch wrapping module for Spacy. Models that expect to be wrapped with wrap_pytorch_model should inherit from this module.
PARAMETER | DESCRIPTION |
---|---|
input_size |
Size of the input embeddings
TYPE:
|
n_labels |
Number of labels predicted by the module
TYPE:
|
Source code in edsnlp/pipelines/trainable/pytorch_wrapper.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
|
load_state_dict(state_dict, strict=True)
Loads the model inplace from a dumped state_dict
object
PARAMETER | DESCRIPTION |
---|---|
state_dict |
TYPE:
|
strict |
TYPE:
|
Source code in edsnlp/pipelines/trainable/pytorch_wrapper.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
state_dict(destination=None, prefix='', keep_vars=False)
Loads the model inplace from a dumped state_dict
object
PARAMETER | DESCRIPTION |
---|---|
destination |
DEFAULT:
|
prefix |
DEFAULT:
|
keep_vars |
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
Source code in edsnlp/pipelines/trainable/pytorch_wrapper.py
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
set_n_labels(n_labels)
Sets the number of labels. To instantiate the linear layer, we need to
call the initialize
method.
PARAMETER | DESCRIPTION |
---|---|
n_labels |
Number of different labels predicted by this module
|
Source code in edsnlp/pipelines/trainable/pytorch_wrapper.py
85 86 87 88 89 90 91 92 93 94 95 |
|
initialize()
Once the number of labels n_labels are known, this method initializes the torch linear layer.
Source code in edsnlp/pipelines/trainable/pytorch_wrapper.py
97 98 99 100 101 102 |
|
forward(embeds, mask, *, additional_outputs=None, is_train=False, is_predict=False)
Apply the nested pytorch module to:
- compute the loss
- predict the outputs
non exclusively.
If outputs are predicted, they are assigned to the additional_outputs
list.
PARAMETER | DESCRIPTION |
---|---|
embeds |
Input embeddings
TYPE:
|
mask |
Input embeddings mask
TYPE:
|
additional_outputs |
Additional outputs that should not / cannot be back-propped through (Thinc treats Pytorch models solely as derivable functions, but the CRF that we employ performs the best tag decoding function with Pytorch) This list will contain the predicted outputs
TYPE:
|
is_train |
Are we training the model (defaults to True)
TYPE:
|
is_predict |
Are we predicting the model (defaults to False)
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Optional[torch.FloatTensor]
|
Optional 0d loss (shape = [1]) to train the model |
Source code in edsnlp/pipelines/trainable/pytorch_wrapper.py
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
pytorch_forward(model, X, is_train=False)
Run the stacked CRF pytorch model to train / run a nested NER model
PARAMETER | DESCRIPTION |
---|---|
model |
TYPE:
|
X |
TYPE:
|
is_train |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Tuple[Floats1d, PredictionT], Callable[Floats1d, Any]]
|
Source code in edsnlp/pipelines/trainable/pytorch_wrapper.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
|
instance_init(model, X=None, Y=None)
Initializes the model by setting the input size of the model layers and the number of predicted labels
PARAMETER | DESCRIPTION |
---|---|
model |
Nested NER thinc model
TYPE:
|
X |
list of documents on which we apply the encoder layer
TYPE:
|
Y |
Unused gold spans
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Model
|
Source code in edsnlp/pipelines/trainable/pytorch_wrapper.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
wrap_pytorch_model(encoder, pt_model, attrs=('set_n_labels'))
Chain and wraps a spaCy/Thinc encoder model (like a tok2vec) and a pytorch model. The loss should be computed directly in the Pytorch module and Categorical predictions are supported
PARAMETER | DESCRIPTION |
---|---|
encoder |
The Thinc document token embedding layer
TYPE:
|
pt_model |
The Pytorch model
TYPE:
|
attrs |
The attributes of the Pytorch model that should be copied to the Thinc model
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tuple[Iterable[Doc], Optional[PredT], Optional[bool]],
|
inputs (docs, gold, *rest, is_predict)Tuple[Floats1d, PredT], outputs (loss, *additional_outputs) |
Source code in edsnlp/pipelines/trainable/pytorch_wrapper.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|