edsnlp.pipelines.ner.scores.sofa.factory
create_component(nlp, name, regex=patterns.regex, value_extract=patterns.value_extract, score_normalization=patterns.score_normalization_str, attr='NORM', window=10, ignore_excluded=False, ignore_space_tokens=False, flags=0)
Matcher component to extract the SOFA score
PARAMETER | DESCRIPTION |
---|---|
nlp |
The spaCy object.
TYPE:
|
name |
The name of the extracted score
TYPE:
|
regex |
A list of regexes to identify the SOFA score
TYPE:
|
attr |
Whether to match on the text ('TEXT') or on the normalized text ('CUSTOM_NORM')
TYPE:
|
value_extract |
Regex to extract the score value
TYPE:
|
score_normalization |
Function that takes the "raw" value extracted from the
TYPE:
|
window |
Number of token to include after the score's mention to find the score's value
TYPE:
|
ignore_excluded |
Whether to ignore excluded spans
TYPE:
|
ignore_space_tokens |
Whether to ignore space tokens
TYPE:
|
flags |
Flags to pass to the regex
TYPE:
|
Source code in edsnlp/pipelines/ner/scores/sofa/factory.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|