Skip to content

Endlines

The eds.endlines pipeline classifies newline characters as actual end of lines or mere spaces. In the latter case, the token is removed from the normalised document.

Behind the scenes, it uses a endlinesmodel instance, which is an unsupervised algorithm based on the work of Zweigenbaum et al1.

Usage

The following example shows a simple usage.

Training

import spacy
from edsnlp.pipelines.core.endlines.endlinesmodel import EndLinesModel

nlp = spacy.blank("fr")

texts = [
    """Le patient est arrivé hier soir.
Il est accompagné par son fils

ANTECEDENTS
Il a fait une TS en 2010;
Fumeur, il est arreté il a 5 mois
Chirurgie de coeur en 2011
CONCLUSION
Il doit prendre
le medicament indiqué 3 fois par jour. Revoir médecin
dans 1 mois.
DIAGNOSTIC :

Antecedents Familiaux:
- 1. Père avec diabete

""",
    """J'aime le \nfromage...\n""",
]

docs = list(nlp.pipe(texts))

# Train and predict an EndLinesModel
endlines = EndLinesModel(nlp=nlp)

df = endlines.fit_and_predict(docs)
df.head()

PATH = "/tmp/path_to_save"
endlines.save(PATH)

Inference

import spacy
from spacy.tokens import Span
from spacy import displacy

nlp = spacy.blank("fr")

PATH = "/tmp/path_to_save"
nlp.add_pipe("eds.endlines", config=dict(model_path=PATH))

docs = list(nlp.pipe(texts))

doc_exemple = docs[1]

doc_exemple.ents = tuple(
    Span(doc_exemple, token.i, token.i + 1, "excluded")
    for token in doc_exemple
    if token.tag_ == "EXCLUDED"
)

displacy.render(doc_exemple, style="ent", options={"colors": {"space": "red"}})

Configuration

The pipeline can be configured using the following parameters :

Parameter Explanation Default
model_path Path to the pre-trained pipeline Required

Declared extensions

The eds.endlines pipeline declares one spaCy extensions, on both Span and Token objects. The end_line attribute is a boolean, set to True if the pipeline predicts that the new line is an end line character. Otherwise, it is set to False if the new line is classified as a space.

The pipeline also sets the excluded custom attribute on newlines that are classified as spaces. It lets downstream matchers skip excluded tokens (see normalisation) for more detail.

Authors and citation

The eds.endlines pipeline was developed by AP-HP's Data Science team based on the work of Zweigenbaum et al1.


  1. Pierre Zweigenbaum, Cyril Grouin, and Thomas Lavergne. Une catégorisation de fins de lignes non-supervisée (end-of-line classification with no supervision). In Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 2 : TALN (Posters), 364–371. Paris, France, 7 2016. AFCP - ATALA. URL: https://aclanthology.org/2016.jeptalnrecital-poster.7