Skip to content

edsnlp.processing.simple

nlp = spacy.blank('eds') module-attribute

ExtensionSchema = Union[str, List[str], Dict[str, Any]] module-attribute

pipe(note, nlp, context=[], results_extractor=None, additional_spans=[], extensions=[], batch_size=1000, progress_bar=True)

Function to apply a spaCy pipe to a pandas DataFrame note For a large DataFrame, prefer the parallel version.

PARAMETER DESCRIPTION
note

A pandas DataFrame with a note_id and note_text column

TYPE: DataFrame

nlp

A spaCy pipe

TYPE: Language

context

A list of column to add to the generated SpaCy document as an extension. For instance, if context=["note_datetime"], the corresponding value found in thenote_datetimecolumn will be stored indoc._.note_datetime, which can be useful e.g. for thedates` pipeline.

TYPE: List[str] DEFAULT: []

additional_spans

A name (or list of names) of SpanGroup on which to apply the pipe too: SpanGroup are available as doc.spans[spangroup_name] and can be generated by some pipes. For instance, the date pipe populates doc.spans['dates']

TYPE: Union[List[str], str], by default "discarded" DEFAULT: []

extensions

Spans extensions to add to the extracted results: For instance, if extensions=["score_name"], the extracted result will include, for each entity, ent._.score_name.

TYPE: List[Tuple[str, T.DataType]], by default [] DEFAULT: []

batch_size

Batch size used by spaCy's pipe

TYPE: int, by default 1000 DEFAULT: 1000

progress_bar

Whether to display a progress bar or not

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION
DataFrame

A pandas DataFrame with one line per extraction

Source code in edsnlp/processing/simple.py
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
def pipe(
    note: pd.DataFrame,
    nlp: Language,
    context: List[str] = [],
    results_extractor: Optional[Callable[[Doc], List[Dict[str, Any]]]] = None,
    additional_spans: Union[List[str], str] = [],
    extensions: Union[List[str], str] = [],
    batch_size: int = 1000,
    progress_bar: bool = True,
):
    """
    Function to apply a spaCy pipe to a pandas DataFrame note
    For a large DataFrame, prefer the parallel version.

    Parameters
    ----------
    note : DataFrame
        A pandas DataFrame with a `note_id` and `note_text` column
    nlp : Language
        A spaCy pipe
    context : List[str]
        A list of column to add to the generated SpaCy document as an extension.
        For instance, if `context=["note_datetime"], the corresponding value found
        in the `note_datetime` column will be stored in `doc._.note_datetime`,
        which can be useful e.g. for the `dates` pipeline.
    additional_spans : Union[List[str], str], by default "discarded"
        A name (or list of names) of SpanGroup on which to apply the pipe too:
        SpanGroup are available as `doc.spans[spangroup_name]` and can be generated
        by some pipes. For instance, the `date` pipe populates doc.spans['dates']
    extensions : List[Tuple[str, T.DataType]], by default []
        Spans extensions to add to the extracted results:
        For instance, if `extensions=["score_name"]`, the extracted result
        will include, for each entity, `ent._.score_name`.
    batch_size : int, by default 1000
        Batch size used by spaCy's pipe
    progress_bar: bool, by default True
        Whether to display a progress bar or not

    Returns
    -------
    DataFrame
        A pandas DataFrame with one line per extraction
    """
    return pd.DataFrame(
        _flatten(
            _pipe_generator(
                note=note,
                nlp=nlp,
                context=context,
                results_extractor=results_extractor,
                additional_spans=additional_spans,
                extensions=extensions,
                batch_size=batch_size,
                progress_bar=progress_bar,
            )
        )
    )