edsnlp.pipelines.trainable.nested_ner
msg = Printer()
module-attribute
NUM_INITIALIZATION_EXAMPLES = 1000
module-attribute
nested_ner_default_config = '\n[model]\n @architectures = "eds.stack_crf_ner_model.v1"\n mode = "joint"\n\n [model.tok2vec]\n @architectures = "spacy.Tok2Vec.v1"\n\n [model.tok2vec.embed]\n @architectures = "spacy.MultiHashEmbed.v1"\n width = 96\n rows = [5000, 2000, 1000, 1000]\n attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"]\n include_static_vectors = false\n\n [model.tok2vec.encode]\n @architectures = "spacy.MaxoutWindowEncoder.v1"\n width = ${model.tok2vec.embed.width}\n window_size = 1\n maxout_pieces = 3\n depth = 4\n\n[scorer]\n @scorers = "eds.nested_ner_scorer.v1"\n'
module-attribute
NESTED_NER_DEFAULTS = Config().from_str(nested_ner_default_config)
module-attribute
np_ops = NumpyOps()
module-attribute
TrainableNer
Bases: TrainablePipe
Source code in edsnlp/pipelines/trainable/nested_ner.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
|
scorer = scorer
instance-attribute
__init__(vocab, model, name='nested_ner', ent_labels=(), spans_labels=None, scorer=None)
Initialize a general named entity recognizer (with or without nested or overlapping entities).
PARAMETER | DESCRIPTION |
---|---|
vocab |
Spacy vocabulary
TYPE:
|
model |
The model to extract the spans
TYPE:
|
name |
Name of the component
TYPE:
|
ent_labels |
list of labels to filter entities for in
TYPE:
|
spans_labels |
Mapping from span group names to list of labels to look for entities and assign the predicted entities
TYPE:
|
scorer |
Method to call to score predictions
TYPE:
|
Source code in edsnlp/pipelines/trainable/nested_ner.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
labels()
Return the labels currently added to the component.
Source code in edsnlp/pipelines/trainable/nested_ner.py
207 208 209 210 |
|
spans_labels()
Return the span group to labels filters mapping
Source code in edsnlp/pipelines/trainable/nested_ner.py
212 213 214 215 |
|
ent_labels()
Return the doc.ents labels filters
Source code in edsnlp/pipelines/trainable/nested_ner.py
217 218 219 220 |
|
add_label(label)
Add a new label to the pipe.
Source code in edsnlp/pipelines/trainable/nested_ner.py
222 223 224 |
|
predict(docs)
Apply the pipeline's model to a batch of docs, without modifying them.
PARAMETER | DESCRIPTION |
---|---|
docs |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Int2d
|
The predicted list of (doc_idx, label_idx, begin, end) tuples as a tensor that contain the spans' prediction for all the batch |
Source code in edsnlp/pipelines/trainable/nested_ner.py
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|
set_annotations(docs, predictions, **kwargs)
Modify a batch of Doc
objects, using predicted spans.
PARAMETER | DESCRIPTION |
---|---|
docs |
The documents to update
TYPE:
|
predictions |
Spans predictions, as returned by the model's predict method
TYPE:
|
Source code in edsnlp/pipelines/trainable/nested_ner.py
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
|
update(examples, *, drop=0.0, set_annotations=False, sgd=None, losses=None)
Learn from a batch of documents and gold-standard information, updating the pipe's model. Delegates to begin_update and get_loss.
Unlike standard TrainablePipe components, the discrete ops (best selection
of tags) is performed by the model directly (begin_update
returns the loss
and the predictions)
PARAMETER | DESCRIPTION |
---|---|
examples |
TYPE:
|
drop |
TYPE:
|
set_annotations: bool Whether to update the document with predicted spans sgd: Optional[Optimizer] Optimizer losses: Optional[Dict[str, float]] Dict of loss, updated in place
RETURNS | DESCRIPTION |
---|---|
Dict[str, float]
|
Updated losses dict |
Source code in edsnlp/pipelines/trainable/nested_ner.py
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
|
get_loss(examples, loss)
Find the loss and gradient of loss for the batch of documents and their predicted scores.
Source code in edsnlp/pipelines/trainable/nested_ner.py
330 331 332 333 |
|
initialize(get_examples, *, nlp=None, labels=None)
Initialize the pipe for training, using a representative set of data examples.
- If no ent_labels are provided, we scrap them from the ents of the set of examples.
- If no span labels are provided, we scrap them from the spans of the set of examples, and filter these labels with the ents_labels.
PARAMETER | DESCRIPTION |
---|---|
get_examples |
Method to sample some examples
TYPE:
|
nlp |
Unused spacy model
TYPE:
|
labels |
Unused list of labels
TYPE:
|
Source code in edsnlp/pipelines/trainable/nested_ner.py
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
|
examples_to_truth(examples)
Converts the spans of the examples into a list
of (doc_idx, label_idx, begin, end) tuple as a tensor,
that will be fed to the model with the begin_update
method.
PARAMETER | DESCRIPTION |
---|---|
examples |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Ints2d
|
Source code in edsnlp/pipelines/trainable/nested_ner.py
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
|
create_component(nlp, name, model, ent_labels=None, spans_labels=None, scorer=None)
Construct a TrainableQualifier component.
Source code in edsnlp/pipelines/trainable/nested_ner.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
nested_ner_scorer(examples, **cfg)
Scores the extracted entities that may be overlapping or nested
by looking in doc.ents
, and doc.spans
.
PARAMETER | DESCRIPTION |
---|---|
examples |
TYPE:
|
cfg |
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, float]
|
Source code in edsnlp/pipelines/trainable/nested_ner.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
make_nested_ner_scorer()
Source code in edsnlp/pipelines/trainable/nested_ner.py
145 146 147 |
|