Skip to content

edsnlp.connectors.brat

REGEX_ENTITY = re.compile('^(T\\d+)\\t([^\\s]+)([^\\t]+)\\t(.*)$') module-attribute

REGEX_NOTE = re.compile('^(#\\d+)\\tAnnotatorNotes ([^\\t]+)\\t(.*)$') module-attribute

REGEX_RELATION = re.compile('^(R\\d+)\\t([^\\s]+) Arg1:([^\\s]+) Arg2:([^\\s]+)') module-attribute

REGEX_ATTRIBUTE = re.compile('^([AM]\\d+)\\t(.+)$') module-attribute

REGEX_EVENT = re.compile('^(E\\d+)\\t(.+)$') module-attribute

REGEX_EVENT_PART = re.compile('([^\\s]+):([TE]\\d+)') module-attribute

BratParsingError

Bases: ValueError

Source code in edsnlp/connectors/brat.py
24
25
26
class BratParsingError(ValueError):
    def __init__(self, ann_file, line):
        super().__init__(f"File {ann_file}, unrecognized Brat line {line}")

__init__(ann_file, line)

Source code in edsnlp/connectors/brat.py
25
26
def __init__(self, ann_file, line):
    super().__init__(f"File {ann_file}, unrecognized Brat line {line}")

BratConnector

Bases: object

Two-way connector with BRAT. Supports entities only.

PARAMETER DESCRIPTION
directory

Directory containing the BRAT files.

TYPE: Union[str, Path]

n_jobs

Number of jobs for multiprocessing, by default 1

TYPE: int, optional

attributes

Mapping from BRAT attributes to spaCy Span extensions. Extensions / attributes that are not in the mapping are not imported or exported If left to None, the mapping is filled with all BRAT attributes.

span_groups

Additional span groups to look for entities in spaCy documents when exporting. Missing label (resp. span group) names are not imported (resp. exported) If left to None, the sequence is filled with all BRAT entity labels.

Source code in edsnlp/connectors/brat.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
class BratConnector(object):
    """
    Two-way connector with BRAT. Supports entities only.

    Parameters
    ----------
    directory : Union[str, Path]
        Directory containing the BRAT files.
    n_jobs : int, optional
        Number of jobs for multiprocessing, by default 1
    attributes: Optional[Union[Sequence[str], Mapping[str, str]]]
        Mapping from BRAT attributes to spaCy Span extensions.
        Extensions / attributes that are not in the mapping are not imported or exported
        If left to None, the mapping is filled with all BRAT attributes.
    span_groups: Optional[Sequence[str]]
        Additional span groups to look for entities in spaCy documents when exporting.
        Missing label (resp. span group) names are not imported (resp. exported)
        If left to None, the sequence is filled with all BRAT entity labels.
    """

    def __init__(
        self,
        directory: Union[str, Path],
        n_jobs: int = 1,
        attributes: Optional[Union[Sequence[str], Mapping[str, str]]] = None,
        span_groups: Optional[Sequence[str]] = None,
    ):
        self.directory: Path = Path(directory)
        self.n_jobs = n_jobs
        if attributes is None:
            self.attr_map = None
        elif isinstance(attributes, (tuple, list)):
            self.attr_map = {k: k for k in attributes}
        elif isinstance(attributes, dict):
            self.attr_map = attributes
        else:
            raise TypeError(
                "`attributes` should be a list, tuple or mapping of strings"
            )
        self.span_groups = None if span_groups is None else tuple(span_groups)

    def full_path(self, filename: str) -> str:
        return os.path.join(self.directory, filename)

    def load_brat(self) -> List[Dict]:
        """
        Transforms a BRAT folder to a list of spaCy documents.

        Parameters
        ----------
        nlp:
            A spaCy pipeline.

        Returns
        -------
        docs:
            List of spaCy documents, with annotations in the `ents` attribute.
        """
        filenames = [
            path.relative_to(self.directory) for path in self.directory.rglob("*.txt")
        ]

        assert len(filenames), f"BRAT directory {self.directory} is empty!"

        logger.info(
            f"The BRAT directory contains {len(filenames)} annotated documents."
        )

        def load_and_rename(filename):
            res = load_from_brat(filename)
            res["note_id"] = str(Path(filename).relative_to(self.directory)).rsplit(
                ".", 1
            )[0]
            bar.update(1)
            return res

        bar = tqdm(
            total=len(filenames), ascii=True, ncols=100, desc="Annotation extraction"
        )
        with bar:
            annotations = Parallel(n_jobs=self.n_jobs)(
                delayed(load_and_rename)(self.full_path(filename))
                for filename in filenames
            )

        return annotations

    def brat2docs(self, nlp: Language, run_pipe=False) -> List[Doc]:
        """
        Transforms a BRAT folder to a list of spaCy documents.

        Parameters
        ----------
        nlp: Language
            A spaCy pipeline.
        run_pipe: bool
            Should the full spaCy pipeline be run on the documents, or just the
            tokenization (defaults to False ie only tokenization)

        Returns
        -------
        docs:
            List of spaCy documents, with annotations in the `ents` attribute.
        """

        annotations = self.load_brat()

        texts = [doc["text"] for doc in annotations]

        docs = []

        if run_pipe:
            gold_docs = nlp.pipe(texts, batch_size=50, n_process=self.n_jobs)
        else:
            gold_docs = (nlp.make_doc(t) for t in texts)

        for doc, doc_annotations in tqdm(
            zip(gold_docs, annotations),
            ascii=True,
            ncols=100,
            desc="spaCy conversion",
            total=len(texts),
        ):

            doc._.note_id = doc_annotations["note_id"]

            spans = []
            span_groups = defaultdict(lambda: [])

            if self.attr_map is not None:
                for dst in self.attr_map.values():
                    if not Span.has_extension(dst):
                        Span.set_extension(dst, default=None)

            encountered_attributes = set()
            for ent in doc_annotations["entities"]:
                if self.attr_map is None:
                    for a in ent["attributes"]:
                        if not Span.has_extension(a["label"]):
                            Span.set_extension(a["label"], default=None)
                        encountered_attributes.add(a["label"])

                for fragment in ent["fragments"]:
                    span = doc.char_span(
                        fragment["begin"],
                        fragment["end"],
                        label=ent["label"],
                        alignment_mode="expand",
                    )
                    for a in ent["attributes"]:
                        if self.attr_map is None or a["label"] in self.attr_map:
                            new_name = (
                                a["label"]
                                if self.attr_map is None
                                else self.attr_map[a["label"]]
                            )
                            span._.set(new_name, a["value"] if a is not None else True)
                    spans.append(span)

                    if self.span_groups is None or ent["label"] in self.span_groups:
                        span_groups[ent["label"]].append(span)

            if self.attr_map is None:
                self.attr_map = {k: k for k in encountered_attributes}

            if self.span_groups is None:
                self.span_groups = sorted(span_groups.keys())

            doc.ents = filter_spans(spans)
            for group_name, group in span_groups.items():
                doc.spans[group_name] = group

            docs.append(doc)

        return docs

    def doc2brat(self, doc: Doc) -> None:
        """
        Writes a spaCy document to file in the BRAT directory.

        Parameters
        ----------
        doc:
            spaCy Doc object. The spans in `ents` will populate the `note_id.ann` file.
        """
        filename = str(doc._.note_id)

        if self.attr_map is None:
            rattr_map = {}
        else:
            rattr_map = {v: k for k, v in self.attr_map.items()}

        annotations = {
            "entities": [
                {
                    "entity_id": i,
                    "fragments": [
                        {
                            "begin": ent.start_char,
                            "end": ent.end_char,
                        }
                    ],
                    "attributes": [
                        {"label": rattr_map[a], "value": getattr(ent._, a)}
                        for a in rattr_map
                        if getattr(ent._, a) is not None
                    ],
                    "label": ent.label_,
                }
                for i, ent in enumerate(
                    sorted(
                        {
                            *doc.ents,
                            *(
                                span
                                for name in doc.spans
                                if self.span_groups is None or name in self.span_groups
                                for span in doc.spans[name]
                            ),
                        }
                    )
                )
            ],
            "text": doc.text,
        }
        export_to_brat(
            annotations,
            self.full_path(f"{filename}.txt"),
            overwrite_txt=False,
            overwrite_ann=True,
        )

    def docs2brat(self, docs: List[Doc]) -> None:
        """
        Writes a list of spaCy documents to file.

        Parameters
        ----------
        docs:
            List of spaCy documents.
        """
        for doc in docs:
            self.doc2brat(doc)

    def get_brat(self) -> Tuple[pd.DataFrame, pd.DataFrame]:
        """
        Reads texts and annotations, and returns two DataFrame objects.
        For backward compatibility

        Returns
        -------
        texts:
            A DataFrame containing two fields, `note_id` and `note_text`
        annotations:
            A DataFrame containing the annotations.
        """

        brat = self.load_brat()

        texts = pd.DataFrame(
            [
                {
                    "note_id": doc["note_id"],
                    "note_text": doc["text"],
                }
                for doc in brat
            ]
        )

        annotations = pd.DataFrame(
            [
                {
                    "note_id": doc["note_id"],
                    "index": i,
                    "begin": f["begin"],
                    "end": f["end"],
                    "label": e["label"],
                    "lexical_variant": e["text"],
                }
                for doc in brat
                for i, e in enumerate(doc["entities"])
                for f in e["fragments"]
            ]
        )

        return texts, annotations

directory: Path = Path(directory) instance-attribute

n_jobs = n_jobs instance-attribute

attr_map = None instance-attribute

span_groups = None if span_groups is None else tuple(span_groups) instance-attribute

__init__(directory, n_jobs=1, attributes=None, span_groups=None)

Source code in edsnlp/connectors/brat.py
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
def __init__(
    self,
    directory: Union[str, Path],
    n_jobs: int = 1,
    attributes: Optional[Union[Sequence[str], Mapping[str, str]]] = None,
    span_groups: Optional[Sequence[str]] = None,
):
    self.directory: Path = Path(directory)
    self.n_jobs = n_jobs
    if attributes is None:
        self.attr_map = None
    elif isinstance(attributes, (tuple, list)):
        self.attr_map = {k: k for k in attributes}
    elif isinstance(attributes, dict):
        self.attr_map = attributes
    else:
        raise TypeError(
            "`attributes` should be a list, tuple or mapping of strings"
        )
    self.span_groups = None if span_groups is None else tuple(span_groups)

full_path(filename)

Source code in edsnlp/connectors/brat.py
309
310
def full_path(self, filename: str) -> str:
    return os.path.join(self.directory, filename)

load_brat()

Transforms a BRAT folder to a list of spaCy documents.

PARAMETER DESCRIPTION
nlp

A spaCy pipeline.

RETURNS DESCRIPTION
docs

List of spaCy documents, with annotations in the ents attribute.

Source code in edsnlp/connectors/brat.py
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
def load_brat(self) -> List[Dict]:
    """
    Transforms a BRAT folder to a list of spaCy documents.

    Parameters
    ----------
    nlp:
        A spaCy pipeline.

    Returns
    -------
    docs:
        List of spaCy documents, with annotations in the `ents` attribute.
    """
    filenames = [
        path.relative_to(self.directory) for path in self.directory.rglob("*.txt")
    ]

    assert len(filenames), f"BRAT directory {self.directory} is empty!"

    logger.info(
        f"The BRAT directory contains {len(filenames)} annotated documents."
    )

    def load_and_rename(filename):
        res = load_from_brat(filename)
        res["note_id"] = str(Path(filename).relative_to(self.directory)).rsplit(
            ".", 1
        )[0]
        bar.update(1)
        return res

    bar = tqdm(
        total=len(filenames), ascii=True, ncols=100, desc="Annotation extraction"
    )
    with bar:
        annotations = Parallel(n_jobs=self.n_jobs)(
            delayed(load_and_rename)(self.full_path(filename))
            for filename in filenames
        )

    return annotations

brat2docs(nlp, run_pipe=False)

Transforms a BRAT folder to a list of spaCy documents.

PARAMETER DESCRIPTION
nlp

A spaCy pipeline.

TYPE: Language

run_pipe

Should the full spaCy pipeline be run on the documents, or just the tokenization (defaults to False ie only tokenization)

DEFAULT: False

RETURNS DESCRIPTION
docs

List of spaCy documents, with annotations in the ents attribute.

Source code in edsnlp/connectors/brat.py
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def brat2docs(self, nlp: Language, run_pipe=False) -> List[Doc]:
    """
    Transforms a BRAT folder to a list of spaCy documents.

    Parameters
    ----------
    nlp: Language
        A spaCy pipeline.
    run_pipe: bool
        Should the full spaCy pipeline be run on the documents, or just the
        tokenization (defaults to False ie only tokenization)

    Returns
    -------
    docs:
        List of spaCy documents, with annotations in the `ents` attribute.
    """

    annotations = self.load_brat()

    texts = [doc["text"] for doc in annotations]

    docs = []

    if run_pipe:
        gold_docs = nlp.pipe(texts, batch_size=50, n_process=self.n_jobs)
    else:
        gold_docs = (nlp.make_doc(t) for t in texts)

    for doc, doc_annotations in tqdm(
        zip(gold_docs, annotations),
        ascii=True,
        ncols=100,
        desc="spaCy conversion",
        total=len(texts),
    ):

        doc._.note_id = doc_annotations["note_id"]

        spans = []
        span_groups = defaultdict(lambda: [])

        if self.attr_map is not None:
            for dst in self.attr_map.values():
                if not Span.has_extension(dst):
                    Span.set_extension(dst, default=None)

        encountered_attributes = set()
        for ent in doc_annotations["entities"]:
            if self.attr_map is None:
                for a in ent["attributes"]:
                    if not Span.has_extension(a["label"]):
                        Span.set_extension(a["label"], default=None)
                    encountered_attributes.add(a["label"])

            for fragment in ent["fragments"]:
                span = doc.char_span(
                    fragment["begin"],
                    fragment["end"],
                    label=ent["label"],
                    alignment_mode="expand",
                )
                for a in ent["attributes"]:
                    if self.attr_map is None or a["label"] in self.attr_map:
                        new_name = (
                            a["label"]
                            if self.attr_map is None
                            else self.attr_map[a["label"]]
                        )
                        span._.set(new_name, a["value"] if a is not None else True)
                spans.append(span)

                if self.span_groups is None or ent["label"] in self.span_groups:
                    span_groups[ent["label"]].append(span)

        if self.attr_map is None:
            self.attr_map = {k: k for k in encountered_attributes}

        if self.span_groups is None:
            self.span_groups = sorted(span_groups.keys())

        doc.ents = filter_spans(spans)
        for group_name, group in span_groups.items():
            doc.spans[group_name] = group

        docs.append(doc)

    return docs

doc2brat(doc)

Writes a spaCy document to file in the BRAT directory.

PARAMETER DESCRIPTION
doc

spaCy Doc object. The spans in ents will populate the note_id.ann file.

TYPE: Doc

Source code in edsnlp/connectors/brat.py
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
def doc2brat(self, doc: Doc) -> None:
    """
    Writes a spaCy document to file in the BRAT directory.

    Parameters
    ----------
    doc:
        spaCy Doc object. The spans in `ents` will populate the `note_id.ann` file.
    """
    filename = str(doc._.note_id)

    if self.attr_map is None:
        rattr_map = {}
    else:
        rattr_map = {v: k for k, v in self.attr_map.items()}

    annotations = {
        "entities": [
            {
                "entity_id": i,
                "fragments": [
                    {
                        "begin": ent.start_char,
                        "end": ent.end_char,
                    }
                ],
                "attributes": [
                    {"label": rattr_map[a], "value": getattr(ent._, a)}
                    for a in rattr_map
                    if getattr(ent._, a) is not None
                ],
                "label": ent.label_,
            }
            for i, ent in enumerate(
                sorted(
                    {
                        *doc.ents,
                        *(
                            span
                            for name in doc.spans
                            if self.span_groups is None or name in self.span_groups
                            for span in doc.spans[name]
                        ),
                    }
                )
            )
        ],
        "text": doc.text,
    }
    export_to_brat(
        annotations,
        self.full_path(f"{filename}.txt"),
        overwrite_txt=False,
        overwrite_ann=True,
    )

docs2brat(docs)

Writes a list of spaCy documents to file.

PARAMETER DESCRIPTION
docs

List of spaCy documents.

TYPE: List[Doc]

Source code in edsnlp/connectors/brat.py
500
501
502
503
504
505
506
507
508
509
510
def docs2brat(self, docs: List[Doc]) -> None:
    """
    Writes a list of spaCy documents to file.

    Parameters
    ----------
    docs:
        List of spaCy documents.
    """
    for doc in docs:
        self.doc2brat(doc)

get_brat()

Reads texts and annotations, and returns two DataFrame objects. For backward compatibility

RETURNS DESCRIPTION
texts

A DataFrame containing two fields, note_id and note_text

annotations

A DataFrame containing the annotations.

Source code in edsnlp/connectors/brat.py
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
def get_brat(self) -> Tuple[pd.DataFrame, pd.DataFrame]:
    """
    Reads texts and annotations, and returns two DataFrame objects.
    For backward compatibility

    Returns
    -------
    texts:
        A DataFrame containing two fields, `note_id` and `note_text`
    annotations:
        A DataFrame containing the annotations.
    """

    brat = self.load_brat()

    texts = pd.DataFrame(
        [
            {
                "note_id": doc["note_id"],
                "note_text": doc["text"],
            }
            for doc in brat
        ]
    )

    annotations = pd.DataFrame(
        [
            {
                "note_id": doc["note_id"],
                "index": i,
                "begin": f["begin"],
                "end": f["end"],
                "label": e["label"],
                "lexical_variant": e["text"],
            }
            for doc in brat
            for i, e in enumerate(doc["entities"])
            for f in e["fragments"]
        ]
    )

    return texts, annotations

load_from_brat(path, merge_spaced_fragments=True)

Load a brat file

Adapted from https://github.com/percevalw/nlstruct/blob/master/nlstruct/datasets/brat.py

PARAMETER DESCRIPTION
path

Path or glob path of the brat text file (.txt, not .ann)

TYPE: str

merge_spaced_fragments

Merge fragments of a entity that was splitted by brat because it overlapped an end of line

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION
Iterator[Dict]
Source code in edsnlp/connectors/brat.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def load_from_brat(path: str, merge_spaced_fragments: bool = True) -> Dict:
    """
    Load a brat file

    Adapted from
    https://github.com/percevalw/nlstruct/blob/master/nlstruct/datasets/brat.py

    Parameters
    ----------
    path: str
        Path or glob path of the brat text file (.txt, not .ann)
    merge_spaced_fragments: bool
        Merge fragments of a entity that was splitted by brat because it overlapped an
        end of line

    Returns
    -------
    Iterator[Dict]
    """
    ann_filenames = []
    for filename in glob.glob(path.replace(".txt", ".a*"), recursive=True):
        ann_filenames.append(filename)

    entities = {}
    relations = []
    events = {}

    # doc_id = filename.replace('.txt', '').split("/")[-1]

    with open(path) as f:
        text = f.read()

    note_id = path.split("/")[-1].rsplit(".", 1)[0]

    if not len(ann_filenames):
        return {
            "note_id": note_id,
            "text": text,
        }

    for ann_file in ann_filenames:
        with open(ann_file) as f:
            for line_idx, line in enumerate(f):
                try:
                    if line.startswith("T"):
                        match = REGEX_ENTITY.match(line)
                        if match is None:
                            raise BratParsingError(ann_file, line)
                        ann_id = match.group(1)
                        entity = match.group(2)
                        span = match.group(3)
                        mention_text = match.group(4)
                        entities[ann_id] = {
                            "text": mention_text,
                            "entity_id": ann_id,
                            "fragments": [],
                            "attributes": [],
                            "comments": [],
                            "label": entity,
                        }
                        last_end = None
                        fragment_i = 0
                        begins_ends = sorted(
                            [
                                (int(s.split()[0]), int(s.split()[1]))
                                for s in span.split(";")
                            ]
                        )

                        for begin, end in begins_ends:
                            # If merge_spaced_fragments, merge two fragments that are
                            # only separated by a newline (brat automatically creates
                            # multiple fragments for a entity that spans over more than
                            # one line)
                            if (
                                merge_spaced_fragments
                                and last_end is not None
                                and len(text[last_end:begin].strip()) == 0
                            ):
                                entities[ann_id]["fragments"][-1]["end"] = end
                                last_end = end
                                continue
                            entities[ann_id]["fragments"].append(
                                {
                                    "begin": begin,
                                    "end": end,
                                }
                            )
                            fragment_i += 1
                            last_end = end
                    elif line.startswith("A") or line.startswith("M"):
                        match = REGEX_ATTRIBUTE.match(line)
                        if match is None:
                            raise BratParsingError(ann_file, line)
                        ann_id = match.group(1)
                        parts = match.group(2).split(" ")
                        if len(parts) >= 3:
                            entity, entity_id, value = parts
                        elif len(parts) == 2:
                            entity, entity_id = parts
                            value = None
                        else:
                            raise BratParsingError(ann_file, line)
                        (
                            entities[entity_id]
                            if entity_id.startswith("T")
                            else events[entity_id]
                        )["attributes"].append(
                            {
                                "attribute_id": ann_id,
                                "label": entity,
                                "value": value,
                            }
                        )
                    elif line.startswith("R"):
                        match = REGEX_RELATION.match(line)
                        if match is None:
                            raise BratParsingError(ann_file, line)
                        ann_id = match.group(1)
                        ann_name = match.group(2)
                        arg1 = match.group(3)
                        arg2 = match.group(4)
                        relations.append(
                            {
                                "relation_id": ann_id,
                                "relation_label": ann_name,
                                "from_entity_id": arg1,
                                "to_entity_id": arg2,
                            }
                        )
                    elif line.startswith("E"):
                        match = REGEX_EVENT.match(line)
                        if match is None:
                            raise BratParsingError(ann_file, line)
                        ann_id = match.group(1)
                        arguments_txt = match.group(2)
                        arguments = []
                        for argument in REGEX_EVENT_PART.finditer(arguments_txt):
                            arguments.append(
                                {
                                    "entity_id": argument.group(2),
                                    "label": argument.group(1),
                                }
                            )
                        events[ann_id] = {
                            "event_id": ann_id,
                            "attributes": [],
                            "arguments": arguments,
                        }
                    elif line.startswith("#"):
                        match = REGEX_NOTE.match(line)
                        if match is None:
                            raise BratParsingError(ann_file, line)
                        ann_id = match.group(1)
                        entity_id = match.group(2)
                        comment = match.group(3)
                        entities[entity_id]["comments"].append(
                            {
                                "comment_id": ann_id,
                                "comment": comment,
                            }
                        )
                except Exception:
                    raise Exception(
                        "Could not parse line {} from {}: {}".format(
                            line_idx, filename.replace(".txt", ".ann"), repr(line)
                        )
                    )
    return {
        "note_id": note_id,
        "text": text,
        "entities": list(entities.values()),
        "relations": relations,
        "events": list(events.values()),
    }

export_to_brat(doc, txt_filename, overwrite_txt=False, overwrite_ann=False)

Source code in edsnlp/connectors/brat.py
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
def export_to_brat(doc, txt_filename, overwrite_txt=False, overwrite_ann=False):
    parent_dir = txt_filename.rsplit("/", 1)[0]
    if parent_dir and not os.path.exists(parent_dir):
        os.makedirs(parent_dir, exist_ok=True)
    if not os.path.exists(txt_filename) or overwrite_txt:
        with open(txt_filename, "w") as f:
            f.write(doc["text"])

    ann_filename = txt_filename.replace(".txt", ".ann")
    attribute_idx = 1
    entities_ids = defaultdict(lambda: "T" + str(len(entities_ids) + 1))
    if not os.path.exists(ann_filename) or overwrite_ann:
        with open(ann_filename, "w") as f:
            if "entities" in doc:
                for entity in doc["entities"]:
                    idx = None
                    spans = []
                    brat_entity_id = entities_ids[entity["entity_id"]]
                    for fragment in sorted(
                        entity["fragments"], key=lambda frag: frag["begin"]
                    ):
                        idx = fragment["begin"]
                        entity_text = doc["text"][fragment["begin"] : fragment["end"]]
                        for part in entity_text.split("\n"):
                            begin = idx
                            end = idx + len(part)
                            idx = end + 1
                            if begin != end:
                                spans.append((begin, end))
                    print(
                        "{}\t{} {}\t{}".format(
                            brat_entity_id,
                            str(entity["label"]),
                            ";".join(" ".join(map(str, span)) for span in spans),
                            entity_text.replace("\n", " "),
                        ),
                        file=f,
                    )
                    if "attributes" in entity:
                        for i, attribute in enumerate(entity["attributes"]):
                            print(
                                "A{}\t{} {} {}".format(
                                    attribute_idx,
                                    str(attribute["label"]),
                                    brat_entity_id,
                                    attribute["value"],
                                ),
                                file=f,
                            )
                            attribute_idx += 1