Drugs
The eds.drugs
pipeline component detects mentions of French drugs (brand names and active ingredients) and adds them to doc.ents
.
Each drug is mapped to an ATC code through
the Romedi terminology 1. The ATC classifies drugs into groups.
Usage
In this example, we are looking for an oral antidiabetic medication (ATC code: A10B).
from edsnlp.pipelines.core.terminology import TerminologyTermMatcher
import spacy
nlp = spacy.blank("fr")
nlp.add_pipe("eds.normalizer")
nlp.add_pipe("eds.drugs", config=dict(term_matcher=TerminologyTermMatcher.exact))
text = "Traitement habituel: Kardégic, cardensiel (bisoprolol), glucophage, lasilix"
doc = nlp(text)
drugs_detected = [(x.text, x.kb_id_) for x in doc.ents]
drugs_detected
# Out: [('Kardégic', 'B01AC06'), ('cardensiel', 'C07AB07'), ('bisoprolol', 'C07AB07'), ('glucophage', 'A10BA02'), ('lasilix', 'C03CA01')]
oral_antidiabetics_detected = list(
filter(lambda x: (x[1].startswith("A10B")), drugs_detected)
)
oral_antidiabetics_detected
# Out: [('glucophage', 'A10BA02')]
Glucophage is the brand name of a medication that contains metformine, the first-line medication for the treatment of type 2 diabetes.
Configuration
The pipeline can be configured using the following parameters :
Parameter | Description | Default |
---|---|---|
term_matcher |
Which algorithm should we use : exact or simstring |
"LOWER" |
term_matcher_config |
Config of the algorithm (SimstringMatcher 's for simstring ) |
"LOWER" |
attr |
spaCy attribute to match on (eg NORM , TEXT , LOWER ) |
"NORM" |
ignore_excluded |
Whether to ignore excluded tokens for matching | False |
Authors and citation
The eds.drugs
pipeline was developed by the IAM team and CHU de Bordeaux's Data Science team.
-
Sébastien Cossin, Luc Lebrun, Grégory Lobre, Romain Loustau, Vianney Jouhet, Romain Griffier, Fleur Mougin, Gayo Diallo, and Frantz Thiessard. Romedi: An Open Data Source About French Drugs on the Semantic Web. Studies in Health Technology and Informatics, 264:79–82, August 2019. URL: https://hal.archives-ouvertes.fr/hal-02987843, doi:10.3233/SHTI190187. ↩