Skip to content

edsnlp.processing.wrapper

pipe(note, nlp, n_jobs=-2, context=[], results_extractor=None, additional_spans=[], extensions=[], **kwargs)

Function to apply a spaCy pipe to a pandas or pyspark DataFrame

PARAMETER DESCRIPTION
note

A pandas/pyspark/koalas DataFrame with a note_id and note_text column

TYPE: DataFrame

nlp

A spaCy pipe

TYPE: Language

context

A list of column to add to the generated SpaCy document as an extension. For instance, if context=["note_datetime"], the corresponding value found in thenote_datetimecolumn will be stored indoc._.note_datetime, which can be useful e.g. for thedates` pipeline.

TYPE: List[str] DEFAULT: []

n_jobs

Only used when providing a Pandas DataFrame

  • n_jobs=1 corresponds to simple_pipe
  • n_jobs>1 corresponds to parallel_pipe with n_jobs parallel workers
  • n_jobs=-1 corresponds to parallel_pipe with maximum number of workers
  • n_jobs=-2 corresponds to parallel_pipe with maximum number of workers -1

TYPE: int, by default -2 DEFAULT: -2

additional_spans

A name (or list of names) of SpanGroup on which to apply the pipe too: SpanGroup are available as doc.spans[spangroup_name] and can be generated by some pipes. For instance, the date pipe populates doc.spans['dates']

TYPE: Union[List[str], str], by default "discarded" DEFAULT: []

extensions

Spans extensions to add to the extracted results: For instance, if extensions=["score_name"], the extracted result will include, for each entity, ent._.score_name.

TYPE: List[Tuple[str, T.DataType]], by default [] DEFAULT: []

kwargs

Additional parameters depending on the how argument.

TYPE: Dict[str, Any]

RETURNS DESCRIPTION
DataFrame

A DataFrame with one line per extraction

Source code in edsnlp/processing/wrapper.py
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def pipe(
    note: DataFrames,
    nlp: Language,
    n_jobs: int = -2,
    context: List[str] = [],
    results_extractor: Optional[Callable[[Doc], List[Dict[str, Any]]]] = None,
    additional_spans: Union[List[str], str] = [],
    extensions: ExtensionSchema = [],
    **kwargs: Dict[str, Any],
) -> DataFrames:
    """
    Function to apply a spaCy pipe to a pandas or pyspark DataFrame


    Parameters
    ----------
    note : DataFrame
        A pandas/pyspark/koalas DataFrame with a `note_id` and `note_text` column
    nlp : Language
        A spaCy pipe
    context : List[str]
        A list of column to add to the generated SpaCy document as an extension.
        For instance, if `context=["note_datetime"], the corresponding value found
        in the `note_datetime` column will be stored in `doc._.note_datetime`,
        which can be useful e.g. for the `dates` pipeline.
    n_jobs : int, by default -2
        Only used when providing a Pandas DataFrame

        - `n_jobs=1` corresponds to `simple_pipe`
        - `n_jobs>1` corresponds to `parallel_pipe` with `n_jobs` parallel workers
        - `n_jobs=-1` corresponds to `parallel_pipe` with maximum number of workers
        - `n_jobs=-2` corresponds to `parallel_pipe` with maximum number of workers -1
    additional_spans : Union[List[str], str], by default "discarded"
        A name (or list of names) of SpanGroup on which to apply the pipe too:
        SpanGroup are available as `doc.spans[spangroup_name]` and can be generated
        by some pipes. For instance, the `date` pipe populates doc.spans['dates']
    extensions : List[Tuple[str, T.DataType]], by default []
        Spans extensions to add to the extracted results:
        For instance, if `extensions=["score_name"]`, the extracted result
        will include, for each entity, `ent._.score_name`.
    kwargs : Dict[str, Any]
        Additional parameters depending on the `how` argument.

    Returns
    -------
    DataFrame
        A DataFrame with one line per extraction
    """

    module = get_module(note)

    if module == DataFrameModules.PANDAS:

        kwargs.pop("dtypes", None)

        if n_jobs == 1:

            return simple_pipe(
                note=note,
                nlp=nlp,
                context=context,
                results_extractor=results_extractor,
                additional_spans=additional_spans,
                extensions=extensions,
                **kwargs,
            )

        else:

            return parallel_pipe(
                note=note,
                nlp=nlp,
                context=context,
                results_extractor=results_extractor,
                additional_spans=additional_spans,
                extensions=extensions,
                n_jobs=n_jobs,
                **kwargs,
            )

    if type(extensions) != dict:
        if extensions:
            raise ValueError(
                """
                When using Spark or Koalas, you should provide extension names
                along with the extension type (as a dictionnary):
                `d[extension_name] = extension_type`
                """  # noqa W291
            )
        else:
            extensions = {}

    from .distributed import custom_pipe
    from .distributed import pipe as distributed_pipe

    if results_extractor is None:

        return distributed_pipe(
            note=note,
            nlp=nlp,
            context=context,
            additional_spans=additional_spans,
            extensions=extensions,
            **kwargs,
        )
    else:

        dtypes = kwargs.pop("dtypes")

        return custom_pipe(
            note=note,
            nlp=nlp,
            context=context,
            results_extractor=results_extractor,
            dtypes=dtypes,
            **kwargs,
        )