Skip to content

Pipelines overview

EDS-NLP provides easy-to-use spaCy components.

Pipeline Description
eds.normalizer Non-destructive input text normalisation
eds.sentences Better sentence boundary detection
eds.matcher A simple yet powerful entity extractor
eds.terminology A simple yet powerful terminology matcher
eds.contextual-matcher A conditional entity extractor
eds.endlines An unsupervised model to classify each end line
Pipeline Description
eds.negation Rule-based negation detection
eds.family Rule-based family context detection
eds.hypothesis Rule-based speculation detection
eds.reported_speech Rule-based reported speech detection
eds.history Rule-based medical history detection
Pipeline Description
eds.dates Date extraction and normalisation
eds.measurements Measure extraction and normalisation
eds.sections Section detection
eds.reason Rule-based hospitalisation reason detection
Pipeline Description
eds.covid A COVID mentions detector
eds.charlson A Charlson score extractor
eds.sofa A SOFA score extractor
eds.emergency.priority A priority score extractor
eds.emergency.ccmu A CCMU score extractor
eds.emergency.gemsa A GEMSA score extractor
eds.TNM A TNM score extractor
eds.cim10 A CIM10 terminology matcher
eds.drugs A Drug mentions extractor
eds.adicap A ADICAP codes extractor

You can add them to your spaCy pipeline by simply calling add_pipe, for instance:

# ↑ Omitted code that defines the nlp object ↑
nlp.add_pipe("eds.normalizer")