Skip to content

edsnlp.pipelines.qualifiers.family

patterns

family: List[str] = ['aïeul', 'aïeux', 'antécédent familial', 'antécédents familiaux', 'arrière-grand-mère', 'arrière-grand-père', 'arrière-grands-parents', 'cousin', 'cousine', 'cousines', 'cousins', 'enfant', 'enfants', 'épouse', 'époux', 'familial', 'familiale', 'familiales', 'familiaux', 'famille', 'fiancé', 'fiancée', 'fils', 'frère', 'frères', 'grand-mère', 'grand-père', 'grands-parents', 'maman', 'mari', 'mère', 'oncle', 'papa', 'parent', 'parents', 'père', 'soeur', 'sœur', 'sœurs', 'soeurs', 'tante'] module-attribute

family

FamilyContext

Bases: Qualifier

Implements a family context detection algorithm.

The components looks for terms indicating family references in the text.

PARAMETER DESCRIPTION
nlp

spaCy nlp pipeline to use for matching.

TYPE: Language

family

List of terms indicating family reference.

TYPE: Optional[List[str]]

terminations

List of termination terms, to separate syntagmas.

TYPE: Optional[List[str]]

attr

spaCy's attribute to use: a string with the value "TEXT" or "NORM", or a dict with the key 'term_attr' we can also add a key for each regex.

TYPE: str

on_ents_only

Whether to look for matches around detected entities only. Useful for faster inference in downstream tasks.

TYPE: bool

regex

A dictionnary of regex patterns.

TYPE: Optional[Dict[str, Union[List[str], str]]]

explain

Whether to keep track of cues for each entity.

TYPE: bool

use_sections

Whether to use annotated sections (namely antécédents familiaux).

TYPE: bool, by default

Source code in edsnlp/pipelines/qualifiers/family/family.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
class FamilyContext(Qualifier):
    """
    Implements a family context detection algorithm.

    The components looks for terms indicating family references in the text.

    Parameters
    ----------
    nlp : Language
        spaCy nlp pipeline to use for matching.
    family : Optional[List[str]]
        List of terms indicating family reference.
    terminations : Optional[List[str]]
        List of termination terms, to separate syntagmas.
    attr : str
        spaCy's attribute to use:
        a string with the value "TEXT" or "NORM", or a dict with the key 'term_attr'
        we can also add a key for each regex.
    on_ents_only : bool
        Whether to look for matches around detected entities only.
        Useful for faster inference in downstream tasks.
    regex : Optional[Dict[str, Union[List[str], str]]]
        A dictionnary of regex patterns.
    explain : bool
        Whether to keep track of cues for each entity.
    use_sections : bool, by default `False`
        Whether to use annotated sections (namely `antécédents familiaux`).
    """

    defaults = dict(
        family=family,
        termination=termination,
    )

    def __init__(
        self,
        nlp: Language,
        attr: str,
        family: Optional[List[str]],
        termination: Optional[List[str]],
        use_sections: bool,
        explain: bool,
        on_ents_only: bool,
    ):

        terms = self.get_defaults(
            family=family,
            termination=termination,
        )

        super().__init__(
            nlp=nlp,
            attr=attr,
            on_ents_only=on_ents_only,
            explain=explain,
            **terms,
        )

        self.set_extensions()

        self.sections = use_sections and (
            "eds.sections" in nlp.pipe_names or "sections" in nlp.pipe_names
        )
        if use_sections and not self.sections:
            logger.warning(
                "You have requested that the pipeline use annotations "
                "provided by the `section` pipeline, but it was not set. "
                "Skipping that step."
            )

    @staticmethod
    def set_extensions() -> None:
        if not Token.has_extension("family"):
            Token.set_extension("family", default=False)

        if not Token.has_extension("family_"):
            Token.set_extension(
                "family_",
                getter=lambda token: "FAMILY" if token._.family else "PATIENT",
            )

        if not Span.has_extension("family"):
            Span.set_extension("family", default=False)

        if not Span.has_extension("family_"):
            Span.set_extension(
                "family_",
                getter=lambda span: "FAMILY" if span._.family else "PATIENT",
            )

        if not Span.has_extension("family_cues"):
            Span.set_extension("family_cues", default=[])

        if not Doc.has_extension("family"):
            Doc.set_extension("family", default=[])

    def process(self, doc: Doc) -> Doc:
        """
        Finds entities related to family context.

        Parameters
        ----------
        doc: spaCy Doc object

        Returns
        -------
        doc: spaCy Doc object, annotated for context
        """
        matches = self.get_matches(doc)

        terminations = get_spans(matches, "termination")
        boundaries = self._boundaries(doc, terminations)

        # Removes duplicate matches and pseudo-expressions in one statement
        matches = filter_spans(matches, label_to_remove="pseudo")

        entities = list(doc.ents) + list(doc.spans.get("discarded", []))
        ents = None

        sections = []

        if self.sections:
            sections = [
                Span(doc, section.start, section.end, label="FAMILY")
                for section in doc.spans["sections"]
                if section.label_ == "antécédents familiaux"
            ]

        for start, end in boundaries:

            ents, entities = consume_spans(
                entities,
                filter=lambda s: check_inclusion(s, start, end),
                second_chance=ents,
            )

            sub_matches, matches = consume_spans(
                matches, lambda s: start <= s.start < end
            )

            sub_sections, sections = consume_spans(sections, lambda s: doc[start] in s)

            if self.on_ents_only and not ents:
                continue

            cues = get_spans(sub_matches, "family")
            cues += sub_sections

            if not cues:
                continue

            family = bool(cues)

            if not family:
                continue

            if not self.on_ents_only:
                for token in doc[start:end]:
                    token._.family = True

            for ent in ents:
                ent._.family = True
                if self.explain:
                    ent._.family_cues += cues
                if not self.on_ents_only:
                    for token in ent:
                        token._.family = True

        return doc
defaults = dict(family=family, termination=termination) class-attribute
sections = use_sections and 'eds.sections' in nlp.pipe_names or 'sections' in nlp.pipe_names instance-attribute
__init__(nlp, attr, family, termination, use_sections, explain, on_ents_only)
Source code in edsnlp/pipelines/qualifiers/family/family.py
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
def __init__(
    self,
    nlp: Language,
    attr: str,
    family: Optional[List[str]],
    termination: Optional[List[str]],
    use_sections: bool,
    explain: bool,
    on_ents_only: bool,
):

    terms = self.get_defaults(
        family=family,
        termination=termination,
    )

    super().__init__(
        nlp=nlp,
        attr=attr,
        on_ents_only=on_ents_only,
        explain=explain,
        **terms,
    )

    self.set_extensions()

    self.sections = use_sections and (
        "eds.sections" in nlp.pipe_names or "sections" in nlp.pipe_names
    )
    if use_sections and not self.sections:
        logger.warning(
            "You have requested that the pipeline use annotations "
            "provided by the `section` pipeline, but it was not set. "
            "Skipping that step."
        )
set_extensions()
Source code in edsnlp/pipelines/qualifiers/family/family.py
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
@staticmethod
def set_extensions() -> None:
    if not Token.has_extension("family"):
        Token.set_extension("family", default=False)

    if not Token.has_extension("family_"):
        Token.set_extension(
            "family_",
            getter=lambda token: "FAMILY" if token._.family else "PATIENT",
        )

    if not Span.has_extension("family"):
        Span.set_extension("family", default=False)

    if not Span.has_extension("family_"):
        Span.set_extension(
            "family_",
            getter=lambda span: "FAMILY" if span._.family else "PATIENT",
        )

    if not Span.has_extension("family_cues"):
        Span.set_extension("family_cues", default=[])

    if not Doc.has_extension("family"):
        Doc.set_extension("family", default=[])
process(doc)

Finds entities related to family context.

PARAMETER DESCRIPTION
doc

TYPE: Doc

RETURNS DESCRIPTION
doc
Source code in edsnlp/pipelines/qualifiers/family/family.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def process(self, doc: Doc) -> Doc:
    """
    Finds entities related to family context.

    Parameters
    ----------
    doc: spaCy Doc object

    Returns
    -------
    doc: spaCy Doc object, annotated for context
    """
    matches = self.get_matches(doc)

    terminations = get_spans(matches, "termination")
    boundaries = self._boundaries(doc, terminations)

    # Removes duplicate matches and pseudo-expressions in one statement
    matches = filter_spans(matches, label_to_remove="pseudo")

    entities = list(doc.ents) + list(doc.spans.get("discarded", []))
    ents = None

    sections = []

    if self.sections:
        sections = [
            Span(doc, section.start, section.end, label="FAMILY")
            for section in doc.spans["sections"]
            if section.label_ == "antécédents familiaux"
        ]

    for start, end in boundaries:

        ents, entities = consume_spans(
            entities,
            filter=lambda s: check_inclusion(s, start, end),
            second_chance=ents,
        )

        sub_matches, matches = consume_spans(
            matches, lambda s: start <= s.start < end
        )

        sub_sections, sections = consume_spans(sections, lambda s: doc[start] in s)

        if self.on_ents_only and not ents:
            continue

        cues = get_spans(sub_matches, "family")
        cues += sub_sections

        if not cues:
            continue

        family = bool(cues)

        if not family:
            continue

        if not self.on_ents_only:
            for token in doc[start:end]:
                token._.family = True

        for ent in ents:
            ent._.family = True
            if self.explain:
                ent._.family_cues += cues
            if not self.on_ents_only:
                for token in ent:
                    token._.family = True

    return doc

factory

DEFAULT_CONFIG = dict(family=None, termination=None, attr='NORM', use_sections=False, explain=False, on_ents_only=True) module-attribute

create_component(nlp, name, family, termination, attr, explain, on_ents_only, use_sections)

Source code in edsnlp/pipelines/qualifiers/family/factory.py
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
@deprecated_factory("family", "eds.family", default_config=DEFAULT_CONFIG)
@Language.factory("eds.family", default_config=DEFAULT_CONFIG)
def create_component(
    nlp: Language,
    name: str,
    family: Optional[List[str]],
    termination: Optional[List[str]],
    attr: str,
    explain: bool,
    on_ents_only: bool,
    use_sections: bool,
):
    return FamilyContext(
        nlp,
        family=family,
        termination=termination,
        attr=attr,
        explain=explain,
        on_ents_only=on_ents_only,
        use_sections=use_sections,
    )
Back to top