edsnlp.pipelines.ner.scores
base_score
Score
Bases: AdvancedRegex
Matcher component to extract a numeric score
PARAMETER | DESCRIPTION |
---|---|
nlp |
The spaCy object.
TYPE:
|
score_name |
The name of the extracted score
TYPE:
|
regex |
A list of regexes to identify the score
TYPE:
|
attr |
Wether to match on the text ('TEXT') or on the normalized text ('NORM')
TYPE:
|
after_extract |
Regex with capturing group to get the score value
TYPE:
|
score_normalization |
Function that takes the "raw" value extracted from the
TYPE:
|
window |
Number of token to include after the score's mention to find the score's value
TYPE:
|
Source code in edsnlp/pipelines/ner/scores/base_score.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
score_name = score_name
instance-attribute
score_normalization = registry.get('misc', score_normalization)
instance-attribute
__init__(nlp, score_name, regex, attr, after_extract, score_normalization, window, verbose, ignore_excluded)
Source code in edsnlp/pipelines/ner/scores/base_score.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
|
set_extensions()
Source code in edsnlp/pipelines/ner/scores/base_score.py
72 73 74 75 76 77 78 |
|
__call__(doc)
Adds spans to document.
PARAMETER | DESCRIPTION |
---|---|
doc |
spaCy Doc object
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
doc
|
spaCy Doc object, annotated for extracted terms. |
Source code in edsnlp/pipelines/ner/scores/base_score.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
|
score_filtering(ents)
Extracts, if available, the value of the score.
Normalizes the score via the provided self.score_normalization
method.
PARAMETER | DESCRIPTION |
---|---|
ents |
List of spaCy's spans extracted by the score matcher
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ents
|
List of spaCy's spans, with, if found, an added |
Source code in edsnlp/pipelines/ner/scores/base_score.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
|
factory
DEFAULT_CONFIG = dict(attr='NORM', window=7, verbose=0, ignore_excluded=False)
module-attribute
create_component(nlp, name, score_name, regex, after_extract, score_normalization, attr, window, verbose, ignore_excluded)
Source code in edsnlp/pipelines/ner/scores/factory.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|
sofa
patterns
regex = ['\\bsofa\\b']
module-attribute
method_regex = 'sofa.*?((?P<max>max\\w*)|(?P<vqheures>24h\\w*)|(?P<admission>admission\\w*))(?P<after_value>(.|\\n)*)'
module-attribute
value_regex = '.*?.[\\n\\W]*?(\\d+)[^h\\d]'
module-attribute
score_normalization_str = 'score_normalization.sofa'
module-attribute
score_normalization(extracted_score)
Sofa score normalization. If available, returns the integer value of the SOFA score.
Source code in edsnlp/pipelines/ner/scores/sofa/patterns.py
17 18 19 20 21 22 23 24 25 |
|
sofa
Sofa
Bases: Score
Matcher component to extract the SOFA score
PARAMETER | DESCRIPTION |
---|---|
nlp |
The spaCy object.
TYPE:
|
score_name |
The name of the extracted score
TYPE:
|
regex |
A list of regexes to identify the SOFA score
TYPE:
|
attr |
Wether to match on the text ('TEXT') or on the normalized text ('CUSTOM_NORM')
TYPE:
|
method_regex |
Regex with capturing group to get the score extraction method (e.g. "à l'admission", "à 24H", "Maximum")
TYPE:
|
value_regex |
Regex to extract the score value
TYPE:
|
score_normalization |
Function that takes the "raw" value extracted from the
TYPE:
|
window |
Number of token to include after the score's mention to find the score's value
TYPE:
|
Source code in edsnlp/pipelines/ner/scores/sofa/sofa.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
method_regex = method_regex
instance-attribute
value_regex = value_regex
instance-attribute
__init__(nlp, score_name, regex, attr, method_regex, value_regex, score_normalization, window, verbose, ignore_excluded)
Source code in edsnlp/pipelines/ner/scores/sofa/sofa.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|
set_extensions()
Source code in edsnlp/pipelines/ner/scores/sofa/sofa.py
71 72 73 74 75 |
|
score_filtering(ents)
Extracts, if available, the value of the score.
Normalizes the score via the provided self.score_normalization
method.
PARAMETER | DESCRIPTION |
---|---|
ents |
List of spaCy's spans extracted by the score matcher
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ents
|
List of spaCy's spans, with, if found, an added |
Source code in edsnlp/pipelines/ner/scores/sofa/sofa.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
factory
DEFAULT_CONFIG = dict(regex=patterns.regex, method_regex=patterns.method_regex, value_regex=patterns.value_regex, score_normalization=patterns.score_normalization_str, attr='NORM', window=20, verbose=0, ignore_excluded=False)
module-attribute
create_component(nlp, name, regex, method_regex, value_regex, score_normalization, attr, window, verbose, ignore_excluded)
Source code in edsnlp/pipelines/ner/scores/sofa/factory.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
charlson
patterns
regex = ['charlson']
module-attribute
after_extract = 'charlson.*?[\\n\\W]*?(\\d+)'
module-attribute
score_normalization_str = 'score_normalization.charlson'
module-attribute
score_normalization(extracted_score)
Charlson score normalization. If available, returns the integer value of the Charlson score.
Source code in edsnlp/pipelines/ner/scores/charlson/patterns.py
12 13 14 15 16 17 18 19 20 |
|
factory
DEFAULT_CONFIG = dict(regex=patterns.regex, after_extract=patterns.after_extract, score_normalization=patterns.score_normalization_str, attr='NORM', window=7, verbose=0, ignore_excluded=False)
module-attribute
create_component(nlp, name, regex, after_extract, score_normalization, attr, window, verbose, ignore_excluded)
Source code in edsnlp/pipelines/ner/scores/charlson/factory.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
emergency
gemsa
patterns
regex = ['\\bgemsa\\b']
module-attribute
after_extract = 'gemsa.*?[\\n\\W]*?(\\d+)'
module-attribute
score_normalization_str = 'score_normalization.gemsa'
module-attribute
score_normalization(extracted_score)
GEMSA score normalization. If available, returns the integer value of the GEMSA score.
Source code in edsnlp/pipelines/ner/scores/emergency/gemsa/patterns.py
12 13 14 15 16 17 18 19 20 |
|
factory
DEFAULT_CONFIG = dict(regex=patterns.regex, after_extract=patterns.after_extract, score_normalization=patterns.score_normalization_str, attr='NORM', window=20, verbose=0, ignore_excluded=False)
module-attribute
create_component(nlp, name, regex, after_extract, score_normalization, attr, window, verbose, ignore_excluded)
Source code in edsnlp/pipelines/ner/scores/emergency/gemsa/factory.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
priority
patterns
regex = ['\\bpriorite\\b']
module-attribute
after_extract = 'priorite.*?[\\n\\W]*?(\\d+)'
module-attribute
score_normalization_str = 'score_normalization.priority'
module-attribute
score_normalization(extracted_score)
Priority score normalization. If available, returns the integer value of the priority score.
Source code in edsnlp/pipelines/ner/scores/emergency/priority/patterns.py
12 13 14 15 16 17 18 19 20 |
|
factory
DEFAULT_CONFIG = dict(regex=patterns.regex, after_extract=patterns.after_extract, score_normalization=patterns.score_normalization_str, attr='NORM', window=7, verbose=0, ignore_excluded=False)
module-attribute
create_component(nlp, name, regex, after_extract, score_normalization, attr, window, verbose, ignore_excluded)
Source code in edsnlp/pipelines/ner/scores/emergency/priority/factory.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
ccmu
patterns
regex = ['\\bccmu\\b']
module-attribute
after_extract = 'ccmu.*?[\\n\\W]*?(\\d+)'
module-attribute
score_normalization_str = 'score_normalization.ccmu'
module-attribute
score_normalization(extracted_score)
CCMU score normalization. If available, returns the integer value of the CCMU score.
Source code in edsnlp/pipelines/ner/scores/emergency/ccmu/patterns.py
12 13 14 15 16 17 18 19 20 |
|
factory
DEFAULT_CONFIG = dict(regex=patterns.regex, after_extract=patterns.after_extract, score_normalization=patterns.score_normalization_str, attr='NORM', window=20, verbose=0, ignore_excluded=False)
module-attribute
create_component(nlp, name, regex, after_extract, score_normalization, attr, window, verbose, ignore_excluded)
Source code in edsnlp/pipelines/ner/scores/emergency/ccmu/factory.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|