Skip to content

edsnlp.pipelines.misc.measures

patterns

CompositeSize

Bases: CompositeMeasure

Composite size measure. Supports the following units: - mm - cm - dm - m

Source code in edsnlp/pipelines/misc/measures/patterns.py
11
12
13
14
15
16
17
18
19
20
21
22
23
class CompositeSize(CompositeMeasure):
    """
    Composite size measure. Supports the following units:
    - mm
    - cm
    - dm
    - m
    """

    mm = property(make_multi_getter("mm"))
    cm = property(make_multi_getter("cm"))
    dm = property(make_multi_getter("dm"))
    m = property(make_multi_getter("m"))
mm = property(make_multi_getter('mm')) class-attribute
cm = property(make_multi_getter('cm')) class-attribute
dm = property(make_multi_getter('dm')) class-attribute
m = property(make_multi_getter('m')) class-attribute

Size

Bases: SimpleMeasure

Size measure. Supports the following units: - mm - cm - dm - m

Source code in edsnlp/pipelines/misc/measures/patterns.py
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
@spacy.registry.misc("eds.measures.size")
class Size(SimpleMeasure):
    """
    Size measure. Supports the following units:
    - mm
    - cm
    - dm
    - m
    """

    COMPOSITE = CompositeSize
    UNITS = {
        "mm": {"prefix": "mill?im", "abbr": "mm", "value": 1},
        "cm": {"prefix": "centim", "abbr": "cm", "value": 10},
        "dm": {"prefix": "decim", "abbr": "dm", "value": 100},
        "m": {"prefix": "metre", "abbr": "m", "value": 1000},
    }

    @classmethod
    def parse(cls, int_part, dec_part, unit, infix=False):
        result = float("{}.{}".format(int_part, dec_part))
        return cls(result, unit)

    mm = property(make_simple_getter("mm"))
    cm = property(make_simple_getter("cm"))
    dm = property(make_simple_getter("dm"))
    m = property(make_simple_getter("m"))
COMPOSITE = CompositeSize class-attribute
UNITS = {'mm': {'prefix': 'mill?im', 'abbr': 'mm', 'value': 1}, 'cm': {'prefix': 'centim', 'abbr': 'cm', 'value': 10}, 'dm': {'prefix': 'decim', 'abbr': 'dm', 'value': 100}, 'm': {'prefix': 'metre', 'abbr': 'm', 'value': 1000}} class-attribute
mm = property(make_simple_getter('mm')) class-attribute
cm = property(make_simple_getter('cm')) class-attribute
dm = property(make_simple_getter('dm')) class-attribute
m = property(make_simple_getter('m')) class-attribute
parse(int_part, dec_part, unit, infix=False)
Source code in edsnlp/pipelines/misc/measures/patterns.py
44
45
46
47
@classmethod
def parse(cls, int_part, dec_part, unit, infix=False):
    result = float("{}.{}".format(int_part, dec_part))
    return cls(result, unit)

Weight

Bases: SimpleMeasure

Weight measure. Supports the following units: - mg - cg - dg - g - kg

Source code in edsnlp/pipelines/misc/measures/patterns.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
@spacy.registry.misc("eds.measures.weight")
class Weight(SimpleMeasure):
    """
    Weight measure. Supports the following units:
    - mg
    - cg
    - dg
    - g
    - kg
    """

    COMPOSITE = None
    UNITS = {
        "mg": {"prefix": "mill?ig", "abbr": "mg", "value": 1},
        "cg": {"prefix": "centig", "abbr": "cg", "value": 10},
        "dg": {"prefix": "decig", "abbr": "dg", "value": 100},
        "g": {"prefix": "gram", "abbr": "g", "value": 1000},
        "kg": {"prefix": "kilo", "abbr": "kg", "value": 1000000},
    }

    @classmethod
    def parse(cls, int_part, dec_part, unit, infix=False):
        result = float("{}.{}".format(int_part, dec_part))
        return cls(result, unit)

    mg = property(make_simple_getter("mg"))
    cg = property(make_simple_getter("cg"))
    dg = property(make_simple_getter("dg"))
    g = property(make_simple_getter("g"))
    kg = property(make_simple_getter("kg"))
COMPOSITE = None class-attribute
UNITS = {'mg': {'prefix': 'mill?ig', 'abbr': 'mg', 'value': 1}, 'cg': {'prefix': 'centig', 'abbr': 'cg', 'value': 10}, 'dg': {'prefix': 'decig', 'abbr': 'dg', 'value': 100}, 'g': {'prefix': 'gram', 'abbr': 'g', 'value': 1000}, 'kg': {'prefix': 'kilo', 'abbr': 'kg', 'value': 1000000}} class-attribute
mg = property(make_simple_getter('mg')) class-attribute
cg = property(make_simple_getter('cg')) class-attribute
dg = property(make_simple_getter('dg')) class-attribute
g = property(make_simple_getter('g')) class-attribute
kg = property(make_simple_getter('kg')) class-attribute
parse(int_part, dec_part, unit, infix=False)
Source code in edsnlp/pipelines/misc/measures/patterns.py
75
76
77
78
@classmethod
def parse(cls, int_part, dec_part, unit, infix=False):
    result = float("{}.{}".format(int_part, dec_part))
    return cls(result, unit)

Angle

Bases: SimpleMeasure

Angle measure. Supports the following units: - h

Source code in edsnlp/pipelines/misc/measures/patterns.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
@spacy.registry.misc("eds.measures.angle")
class Angle(SimpleMeasure):
    """
    Angle measure. Supports the following units:
    - h
    """

    COMPOSITE = None
    UNITS = {
        "h": {"prefix": "heur", "abbr": "h", "value": 1},
    }

    @classmethod
    def parse(cls, int_part, dec_part, unit, infix=False):
        if infix:
            result = float(int_part) + int(dec_part) / 60.0
            return cls(result, unit)
        result = float("{}.{}".format(int_part, dec_part))
        return cls(result, unit)

    h = property(make_simple_getter("h"))
COMPOSITE = None class-attribute
UNITS = {'h': {'prefix': 'heur', 'abbr': 'h', 'value': 1}} class-attribute
h = property(make_simple_getter('h')) class-attribute
parse(int_part, dec_part, unit, infix=False)
Source code in edsnlp/pipelines/misc/measures/patterns.py
 99
100
101
102
103
104
105
@classmethod
def parse(cls, int_part, dec_part, unit, infix=False):
    if infix:
        result = float(int_part) + int(dec_part) / 60.0
        return cls(result, unit)
    result = float("{}.{}".format(int_part, dec_part))
    return cls(result, unit)

factory

DEFAULT_CONFIG = dict(attr='NORM', ignore_excluded=False, measures=['eds.measures.size', 'eds.measures.weight', 'eds.measures.angle']) module-attribute

create_component(nlp, name, measures, attr, ignore_excluded)

Source code in edsnlp/pipelines/misc/measures/factory.py
14
15
16
17
18
19
20
21
22
23
24
25
26
27
@Language.factory("eds.measures", default_config=DEFAULT_CONFIG)
def create_component(
    nlp: Language,
    name: str,
    measures: Union[str, List[str], Dict[str, Dict]],
    attr: str,
    ignore_excluded: bool,
):
    return Measures(
        nlp,
        measures=measures,
        attr=attr,
        ignore_excluded=ignore_excluded,
    )

measures

Measure

Bases: abc.ABC

Source code in edsnlp/pipelines/misc/measures/measures.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
class Measure(abc.ABC):
    INTEGER = r"(?:[0-9]+)"
    CONJUNCTIONS = "et|ou"
    COMPOSERS = r"[x*]|par"

    UNITS = {}
    COMPOSITE = None

    @abc.abstractmethod
    def __iter__(self) -> Iterable["SimpleMeasure"]:
        """
        Iter over items of the measure (only one for SimpleMeasure)

        Returns
        -------
        iterable : Iterable["SimpleMeasure"]
        """

    @abc.abstractmethod
    def __getitem__(self, item) -> "SimpleMeasure":
        """
        Access items of the measure (only one for SimpleMeasure)

        Parameters
        ----------
        item : int

        Returns
        -------
        measure : SimpleMeasure
        """
INTEGER = '(?:[0-9]+)' class-attribute
CONJUNCTIONS = 'et|ou' class-attribute
COMPOSERS = '[x*]|par' class-attribute
UNITS = {} class-attribute
COMPOSITE = None class-attribute
__iter__()

Iter over items of the measure (only one for SimpleMeasure)

RETURNS DESCRIPTION
iterable

TYPE: Iterable["SimpleMeasure"]

Source code in edsnlp/pipelines/misc/measures/measures.py
131
132
133
134
135
136
137
138
139
@abc.abstractmethod
def __iter__(self) -> Iterable["SimpleMeasure"]:
    """
    Iter over items of the measure (only one for SimpleMeasure)

    Returns
    -------
    iterable : Iterable["SimpleMeasure"]
    """
__getitem__(item)

Access items of the measure (only one for SimpleMeasure)

PARAMETER DESCRIPTION
item

TYPE: int

RETURNS DESCRIPTION
measure

TYPE: SimpleMeasure

Source code in edsnlp/pipelines/misc/measures/measures.py
141
142
143
144
145
146
147
148
149
150
151
152
153
@abc.abstractmethod
def __getitem__(self, item) -> "SimpleMeasure":
    """
    Access items of the measure (only one for SimpleMeasure)

    Parameters
    ----------
    item : int

    Returns
    -------
    measure : SimpleMeasure
    """

SimpleMeasure

Bases: Measure

Source code in edsnlp/pipelines/misc/measures/measures.py
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
class SimpleMeasure(Measure):
    def __init__(self, value, unit):
        """
        The SimpleMeasure class contains the value and unit
        for a single non-composite measure

        Parameters
        ----------
        value : float
        unit : str
        """
        super().__init__()
        self.value = value
        self.unit = unit

    @classmethod
    @abc.abstractmethod
    def parse(
        self, int_part: str, dec_part: str, unit: str, infix: bool
    ) -> "SimpleMeasure":
        """
        Class method to create an instance from the match groups

        int_part : str
            The integer part of the match (eg 12 in 12 metres 50 or 12.50metres)
        dec_part : str
            The decimal part of the match (eg 50 in 12 metres 50 or 12.50metres)
        unit : str
            The normalized variant of the unit (eg "m" for 12 metre 50)
        infix : bool
            Whether the unit was in the before (True) or after (False) the decimal part
        """

    def _get_scale_to(self, unit: str):
        return self.UNITS[self.unit]["value"] / self.UNITS[unit]["value"]

    def __iter__(self):
        return iter((self,))

    def __getitem__(self, item: int):
        assert isinstance(item, int)
        return [self][item]

    def __str__(self):
        return f"{self.value}{self.unit}"

    def __repr__(self):
        return f"{self.__class__.__name__}({self.value}, {repr(self.unit)})"

    def __eq__(self, other: "SimpleMeasure"):
        return getattr(self, other.unit) == other.value

    def __lt__(self, other: "SimpleMeasure"):
        return getattr(self, other.unit) < other.value

    def __le__(self, other: "SimpleMeasure"):
        return getattr(self, other.unit) <= other.value
value = value instance-attribute
unit = unit instance-attribute
__init__(value, unit)

The SimpleMeasure class contains the value and unit for a single non-composite measure

PARAMETER DESCRIPTION
value

TYPE: float

unit

TYPE: str

Source code in edsnlp/pipelines/misc/measures/measures.py
157
158
159
160
161
162
163
164
165
166
167
168
169
def __init__(self, value, unit):
    """
    The SimpleMeasure class contains the value and unit
    for a single non-composite measure

    Parameters
    ----------
    value : float
    unit : str
    """
    super().__init__()
    self.value = value
    self.unit = unit
parse(int_part, dec_part, unit, infix)

Class method to create an instance from the match groups

int_part : str The integer part of the match (eg 12 in 12 metres 50 or 12.50metres) dec_part : str The decimal part of the match (eg 50 in 12 metres 50 or 12.50metres) unit : str The normalized variant of the unit (eg "m" for 12 metre 50) infix : bool Whether the unit was in the before (True) or after (False) the decimal part

Source code in edsnlp/pipelines/misc/measures/measures.py
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
@classmethod
@abc.abstractmethod
def parse(
    self, int_part: str, dec_part: str, unit: str, infix: bool
) -> "SimpleMeasure":
    """
    Class method to create an instance from the match groups

    int_part : str
        The integer part of the match (eg 12 in 12 metres 50 or 12.50metres)
    dec_part : str
        The decimal part of the match (eg 50 in 12 metres 50 or 12.50metres)
    unit : str
        The normalized variant of the unit (eg "m" for 12 metre 50)
    infix : bool
        Whether the unit was in the before (True) or after (False) the decimal part
    """
_get_scale_to(unit)
Source code in edsnlp/pipelines/misc/measures/measures.py
189
190
def _get_scale_to(self, unit: str):
    return self.UNITS[self.unit]["value"] / self.UNITS[unit]["value"]
__iter__()
Source code in edsnlp/pipelines/misc/measures/measures.py
192
193
def __iter__(self):
    return iter((self,))
__getitem__(item)
Source code in edsnlp/pipelines/misc/measures/measures.py
195
196
197
def __getitem__(self, item: int):
    assert isinstance(item, int)
    return [self][item]
__str__()
Source code in edsnlp/pipelines/misc/measures/measures.py
199
200
def __str__(self):
    return f"{self.value}{self.unit}"
__repr__()
Source code in edsnlp/pipelines/misc/measures/measures.py
202
203
def __repr__(self):
    return f"{self.__class__.__name__}({self.value}, {repr(self.unit)})"
__eq__(other)
Source code in edsnlp/pipelines/misc/measures/measures.py
205
206
def __eq__(self, other: "SimpleMeasure"):
    return getattr(self, other.unit) == other.value
__lt__(other)
Source code in edsnlp/pipelines/misc/measures/measures.py
208
209
def __lt__(self, other: "SimpleMeasure"):
    return getattr(self, other.unit) < other.value
__le__(other)
Source code in edsnlp/pipelines/misc/measures/measures.py
211
212
def __le__(self, other: "SimpleMeasure"):
    return getattr(self, other.unit) <= other.value

CompositeMeasure

Bases: Measure

The CompositeMeasure class contains a sequence of multiple SimpleMeasure instances

PARAMETER DESCRIPTION
measures

TYPE: List[SimpleMeasure]

Source code in edsnlp/pipelines/misc/measures/measures.py
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
class CompositeMeasure(Measure):
    """
    The CompositeMeasure class contains a sequence
    of multiple SimpleMeasure instances

    Parameters
    ----------
    measures : List[SimpleMeasure]
    """

    def __init__(self, measures: Iterable["SimpleMeasure"]):
        super().__init__()
        self.measures = list(measures)

    def __iter__(self):
        return iter(self.measures)

    def __getitem__(self, item: int):
        assert isinstance(item, int)
        res = self.measures[item]
        return res

    def __str__(self):
        return " x ".join(map(str, self.measures))

    def __repr__(self):
        return f"{self.__class__.__name__}({repr(self.measures)})"
measures = list(measures) instance-attribute
__init__(measures)
Source code in edsnlp/pipelines/misc/measures/measures.py
225
226
227
def __init__(self, measures: Iterable["SimpleMeasure"]):
    super().__init__()
    self.measures = list(measures)
__iter__()
Source code in edsnlp/pipelines/misc/measures/measures.py
229
230
def __iter__(self):
    return iter(self.measures)
__getitem__(item)
Source code in edsnlp/pipelines/misc/measures/measures.py
232
233
234
235
def __getitem__(self, item: int):
    assert isinstance(item, int)
    res = self.measures[item]
    return res
__str__()
Source code in edsnlp/pipelines/misc/measures/measures.py
237
238
def __str__(self):
    return " x ".join(map(str, self.measures))
__repr__()
Source code in edsnlp/pipelines/misc/measures/measures.py
240
241
def __repr__(self):
    return f"{self.__class__.__name__}({repr(self.measures)})"

Measures

Bases: BaseComponent

Matcher component to extract measures. A measures is most often composed of a number and a unit like

1,26 cm The unit can also be positioned in place of the decimal dot/comma 1 cm 26 Some measures can be composite 1,26 cm x 2,34 mm And sometimes they are factorized Les trois kystes mesurent 1, 2 et 3cm.

The recognized measures are stored in the "measures" SpanGroup. Each span has a Measure object stored in the "value" extension attribute.

PARAMETER DESCRIPTION
nlp

The SpaCy object.

TYPE: Language

measures

The registry names of the measures to extract

TYPE: List[str]

attr

Whether to match on the text ('TEXT') or on the normalized text ('NORM')

TYPE: str

ignore_excluded

Whether to exclude pollution patterns when matching in the text

TYPE: bool

Source code in edsnlp/pipelines/misc/measures/measures.py
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
class Measures(BaseComponent):
    """
    Matcher component to extract measures.
    A measures is most often composed of a number and a unit like
    > 1,26 cm
    The unit can also be positioned in place of the decimal dot/comma
    > 1 cm 26
    Some measures can be composite
    > 1,26 cm x 2,34 mm
    And sometimes they are factorized
    > Les trois kystes mesurent 1, 2 et 3cm.

    The recognized measures are stored in the "measures" SpanGroup.
    Each span has a `Measure` object stored in the "value" extension attribute.

    Parameters
    ----------
    nlp : Language
        The SpaCy object.
    measures : List[str]
        The registry names of the measures to extract
    attr : str
        Whether to match on the text ('TEXT') or on the normalized text ('NORM')
    ignore_excluded : bool
        Whether to exclude pollution patterns when matching in the text
    """

    def __init__(
        self,
        nlp: Language,
        measures: List[str],
        attr: str,
        ignore_excluded: bool,
    ):

        self.regex_matcher = RegexMatcher(
            attr=attr,
            ignore_excluded=ignore_excluded,
        )

        self.extraction_regexes = {}
        self.measures: Dict[str, Measure] = {}
        for name in measures:
            cls: Measure = spacy.registry.misc.get(name)
            self.measures[name] = cls
            regexes = make_patterns(cls)
            self.regex_matcher.add(name, regexes["trigger"])
            self.extraction_regexes[name] = regexes["extraction"]

        self.set_extensions()

    @staticmethod
    def set_extensions() -> None:
        super(Measures, Measures).set_extensions()
        if not Span.has_extension("value"):
            Span.set_extension("value", default=None)

    def __call__(self, doc: Doc) -> Doc:
        """
        Adds measures to document's "measures" SpanGroup.

        Parameters
        ----------
        doc:
            spaCy Doc object

        Returns
        -------
        doc:
            spaCy Doc object, annotated for extracted terms.
        """

        matches = dict(self.regex_matcher(doc, as_spans=True, return_groupdict=True))

        # Filter spans by rightmost, largest spans first to handle cases like 1 m 50 kg
        # while keeping the corresponding groupdicts
        matches = {
            match: matches[match]
            for match in filter_spans(matches, sort_key=rightmost_largest_sort_key)
        }

        measures = []
        for match, groupdict in matches.items():
            measure_name = match.label_
            extraction_regex = self.extraction_regexes[measure_name]

            parsed_values = []

            shared_unit_part = next(
                (key for key, val in groupdict.items() if val is not None), None
            )
            for sub_match in regex.finditer(extraction_regex, match.text):
                sub_groupdict = dict(sub_match.groupdict())

                # Integer part of the match
                int_part = sub_groupdict.pop("int_part", 0)

                # Decimal part of the match, if any
                dec_part = sub_groupdict.pop("dec_part", 0) or 0

                # If the unit was not postfix (in cases like 1cm, or 1 et 2cm)
                # the unit must be infix: we extract it now using non empty groupdict
                # entries
                infix_unit_part = next(
                    (key for key, val in sub_groupdict.items() if val is not None),
                    None,
                )
                unit_part = infix_unit_part or shared_unit_part

                # Create one SimpleMeasure per submatch inside each match...
                parsed_values.append(
                    self.measures[measure_name].parse(
                        int_part=int_part,
                        dec_part=dec_part,
                        unit=unit_part,
                        infix=infix_unit_part is not None,
                    )
                )

            # ... and compose theses measures together if there are more than one
            measure = Span(doc, start=match.start, end=match.end, label=measure_name)
            measure._.value = (
                parsed_values[0]
                if len(parsed_values) == 1
                else self.measures[measure_name].COMPOSITE(parsed_values)
                if self.measures[measure_name].COMPOSITE is not None
                else parsed_values[-1]
            )
            measures.append(match)

        doc.spans["measures"] = sorted(measures)

        return doc
regex_matcher = RegexMatcher(attr=attr, ignore_excluded=ignore_excluded) instance-attribute
extraction_regexes = {} instance-attribute
measures: Dict[str, Measure] = {} instance-attribute
__init__(nlp, measures, attr, ignore_excluded)
Source code in edsnlp/pipelines/misc/measures/measures.py
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def __init__(
    self,
    nlp: Language,
    measures: List[str],
    attr: str,
    ignore_excluded: bool,
):

    self.regex_matcher = RegexMatcher(
        attr=attr,
        ignore_excluded=ignore_excluded,
    )

    self.extraction_regexes = {}
    self.measures: Dict[str, Measure] = {}
    for name in measures:
        cls: Measure = spacy.registry.misc.get(name)
        self.measures[name] = cls
        regexes = make_patterns(cls)
        self.regex_matcher.add(name, regexes["trigger"])
        self.extraction_regexes[name] = regexes["extraction"]

    self.set_extensions()
set_extensions()
Source code in edsnlp/pipelines/misc/measures/measures.py
295
296
297
298
299
@staticmethod
def set_extensions() -> None:
    super(Measures, Measures).set_extensions()
    if not Span.has_extension("value"):
        Span.set_extension("value", default=None)
__call__(doc)

Adds measures to document's "measures" SpanGroup.

PARAMETER DESCRIPTION
doc

spaCy Doc object

TYPE: Doc

RETURNS DESCRIPTION
doc

spaCy Doc object, annotated for extracted terms.

Source code in edsnlp/pipelines/misc/measures/measures.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
def __call__(self, doc: Doc) -> Doc:
    """
    Adds measures to document's "measures" SpanGroup.

    Parameters
    ----------
    doc:
        spaCy Doc object

    Returns
    -------
    doc:
        spaCy Doc object, annotated for extracted terms.
    """

    matches = dict(self.regex_matcher(doc, as_spans=True, return_groupdict=True))

    # Filter spans by rightmost, largest spans first to handle cases like 1 m 50 kg
    # while keeping the corresponding groupdicts
    matches = {
        match: matches[match]
        for match in filter_spans(matches, sort_key=rightmost_largest_sort_key)
    }

    measures = []
    for match, groupdict in matches.items():
        measure_name = match.label_
        extraction_regex = self.extraction_regexes[measure_name]

        parsed_values = []

        shared_unit_part = next(
            (key for key, val in groupdict.items() if val is not None), None
        )
        for sub_match in regex.finditer(extraction_regex, match.text):
            sub_groupdict = dict(sub_match.groupdict())

            # Integer part of the match
            int_part = sub_groupdict.pop("int_part", 0)

            # Decimal part of the match, if any
            dec_part = sub_groupdict.pop("dec_part", 0) or 0

            # If the unit was not postfix (in cases like 1cm, or 1 et 2cm)
            # the unit must be infix: we extract it now using non empty groupdict
            # entries
            infix_unit_part = next(
                (key for key, val in sub_groupdict.items() if val is not None),
                None,
            )
            unit_part = infix_unit_part or shared_unit_part

            # Create one SimpleMeasure per submatch inside each match...
            parsed_values.append(
                self.measures[measure_name].parse(
                    int_part=int_part,
                    dec_part=dec_part,
                    unit=unit_part,
                    infix=infix_unit_part is not None,
                )
            )

        # ... and compose theses measures together if there are more than one
        measure = Span(doc, start=match.start, end=match.end, label=measure_name)
        measure._.value = (
            parsed_values[0]
            if len(parsed_values) == 1
            else self.measures[measure_name].COMPOSITE(parsed_values)
            if self.measures[measure_name].COMPOSITE is not None
            else parsed_values[-1]
        )
        measures.append(match)

    doc.spans["measures"] = sorted(measures)

    return doc

disj_capture(regexes, capture=True)

Source code in edsnlp/pipelines/misc/measures/measures.py
14
15
16
17
18
19
20
def disj_capture(regexes, capture=True):
    return "|".join(
        ("(?P<{key}>{forms})" if capture else "{forms}").format(
            key=key, forms="|".join(forms)
        )
        for key, forms in regexes.items()
    )

rightmost_largest_sort_key(span)

Source code in edsnlp/pipelines/misc/measures/measures.py
23
24
def rightmost_largest_sort_key(span):
    return span.end, (len(span))

make_patterns(measure)

Build recognition and extraction patterns for a given Measure class

PARAMETER DESCRIPTION
measure

The measure to build recognition and extraction patterns for

TYPE: 'Measure'

RETURNS DESCRIPTION
trigger

TYPE: List[str]

extraction

TYPE: str

Source code in edsnlp/pipelines/misc/measures/measures.py
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def make_patterns(measure: "Measure") -> Dict[str, Union[List[str], str]]:
    """
    Build recognition and extraction patterns for a given Measure class

    Parameters
    ----------
    measure: Measure class
        The measure to build recognition and extraction patterns for

    Returns
    -------
    trigger : List[str]
    extraction : str
    """
    unit_prefix_reg = disj_capture(
        {key: [entry["prefix"]] for key, entry in measure.UNITS.items()},
        capture=True,
    )
    unit_abbreviation_reg = disj_capture(
        {key: [entry["abbr"]] for key, entry in measure.UNITS.items()},
        capture=True,
    )
    unit_reg = rf"(?:(?:{unit_prefix_reg})[a-z]*|(?:{unit_abbreviation_reg})(?![a-z]))"

    number_reg = rf"(?:{measure.INTEGER}(?:[,.]{measure.INTEGER})?)"
    infix_measure_reg = rf"(?:{measure.INTEGER}{unit_reg}{measure.INTEGER})"

    # Simple measure
    simple_measure_reg = rf"{number_reg}\s*{unit_reg}"
    trigger = [
        simple_measure_reg,
        infix_measure_reg,
        # Factorized measures separated by a conjunction
        rf"{number_reg}(?=(?:\s*[,]\s*{number_reg})*\s*"
        rf"(?:{measure.CONJUNCTIONS})\s*{number_reg}\s*{unit_reg})",
    ]
    if measure.COMPOSITE:
        # Factorized composite measures (3 x 2cm)
        trigger.append(
            rf"(?<![a-z]){number_reg}"
            rf"(?:\s*(?:{measure.COMPOSERS})\s*{number_reg})*\s*{unit_reg}"
        )
        # Expanded composite measures (3cm x 2cm)
        trigger.append(
            rf"(?<![a-z])(?:{infix_measure_reg}|{simple_measure_reg})"
            rf"(\s*(?:{measure.COMPOSERS})\s*"
            rf"(?:{infix_measure_reg}|{simple_measure_reg}))*"
        )

    unit_reg_capture = (
        rf"(?:(?:{unit_prefix_reg})[a-z]*|(?:{unit_abbreviation_reg})(?![a-z]))"
    )

    return {
        "trigger": trigger,
        "extraction": rf"(?P<int_part>{measure.INTEGER})\s*(?:[,.]|"
        rf"{unit_reg_capture})?\s*(?P<dec_part>{measure.INTEGER})?",
    }

make_simple_getter(name)

Source code in edsnlp/pipelines/misc/measures/measures.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def make_simple_getter(name):
    def getter(self):
        """
        Get a scaled numerical value of a measure

        Parameters
        ----------
        self

        Returns
        -------
        float
        """
        return self.value * self._get_scale_to(name)

    return getter

make_multi_getter(name)

Source code in edsnlp/pipelines/misc/measures/measures.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def make_multi_getter(name: str) -> Callable[["CompositeMeasure"], Tuple[float]]:
    def getter(self) -> Tuple[float]:
        """
        Get a scaled numerical values of a multi-measure

        Parameters
        ----------
        self

        Returns
        -------
        float
        """
        return tuple(getattr(measure, name) for measure in self.measures)

    return getter
Back to top