Skip to content

edsnlp.processing.simple

nlp = spacy.blank('eds') module-attribute

ExtensionSchema = Union[str, List[str], Dict[str, Any]] module-attribute

_df_to_spacy(note, nlp, context)

Takes a pandas DataFrame and return a generator that can be used in nlp.pipe().

PARAMETER DESCRIPTION
note

A pandas DataFrame with at least note_text and note_id columns. A Doc object will be created for each line.

TYPE: pd.DataFrame

RETURNS DESCRIPTION
generator

A generator which items are of the form (text, context), with text being a string and context a dictionnary

Source code in edsnlp/processing/simple.py
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def _df_to_spacy(
    note: pd.DataFrame,
    nlp: Language,
    context: List[str],
):
    """
    Takes a pandas DataFrame and return a generator that can be used in
    `nlp.pipe()`.

    Parameters
    ----------
    note: pd.DataFrame
        A pandas DataFrame with at least `note_text` and `note_id` columns.
        A `Doc` object will be created for each line.

    Returns
    -------
    generator:
        A generator which items are of the form (text, context), with `text`
        being a string and `context` a dictionnary
    """

    if context:
        check_spacy_version_for_context()

    kept_cols = ["note_text"] + context

    for col in kept_cols:
        if col not in note.columns:
            raise ValueError(f"No column named {repr(col)} found in df")

    def add_context(context_values):
        note_text = context_values.note_text
        doc = nlp.make_doc(note_text)
        for col in context:
            doc._.set(slugify(col), rgetattr(context_values, col))
        return doc

    yield from map(
        add_context,
        note[kept_cols].itertuples(),
    )

_flatten(list_of_lists)

Flatten a list of lists to a combined list.

Source code in edsnlp/processing/simple.py
64
65
66
67
68
def _flatten(list_of_lists: List[List[Any]]):
    """
    Flatten a list of lists to a combined list.
    """
    return [item for sublist in list_of_lists for item in sublist]

_pipe_generator(note, nlp, context=[], additional_spans='discarded', extensions=[], batch_size=50, progress_bar=True)

Source code in edsnlp/processing/simple.py
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
def _pipe_generator(
    note: pd.DataFrame,
    nlp: Language,
    context: List[str] = [],
    additional_spans: Union[List[str], str] = "discarded",
    extensions: ExtensionSchema = [],
    batch_size: int = 50,
    progress_bar: bool = True,
):

    if type(extensions) == str:
        extensions = [extensions]
    elif type(extensions) == dict:
        extensions = list(extensions.keys())

    if type(additional_spans) == str:
        additional_spans = [additional_spans]

    if "note_id" not in context:
        context.append("note_id")

    if not nlp.has_pipe("eds.context"):
        nlp.add_pipe("eds.context", first=True, config=dict(context=context))

    gen = _df_to_spacy(note, nlp, context)
    n_docs = len(note)
    pipeline = nlp.pipe(gen, batch_size=batch_size)

    for doc in tqdm(pipeline, total=n_docs, disable=not progress_bar):

        yield _full_schema(
            doc,
            additional_spans=additional_spans,
            extensions=extensions,
        )

_single_schema(ent, span_type='ents', extensions=[])

Source code in edsnlp/processing/simple.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def _single_schema(
    ent: Span,
    span_type: str = "ents",
    extensions: List[str] = [],
):

    return {
        "note_id": ent.doc._.note_id,
        "lexical_variant": ent.text,
        "label": ent.label_,
        "span_type": span_type,
        "start": ent.start_char,
        "end": ent.end_char,
        **{slugify(extension): rgetattr(ent._, extension) for extension in extensions},
    }

_full_schema(doc, additional_spans=[], extensions=[])

Function used when Parallelising tasks via joblib. Takes a Doc as input, and returns a list of serializable objects

Note

The parallelisation needs for output objects to be serializable: after splitting the task into separate jobs, intermediate results are saved on memory before being aggregated, thus the need to be serializable. For instance, spaCy's spans aren't serializable since they are merely a view of the parent document.

Check the source code of this function for an example.

Source code in edsnlp/processing/simple.py
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def _full_schema(
    doc: Doc,
    additional_spans: List[str] = [],
    extensions: List[str] = [],
):
    """
    Function used when Parallelising tasks via joblib.
    Takes a Doc as input, and returns a list of serializable objects

    !!! note

        The parallelisation needs for output objects to be **serializable**:
        after splitting the task into separate jobs, intermediate results
        are saved on memory before being aggregated, thus the need to be
        serializable. For instance, spaCy's spans aren't serializable since
        they are merely a *view* of the parent document.

        Check the source code of this function for an example.

    """

    results = []

    results.extend(
        [
            _single_schema(
                ent,
                extensions=extensions,
            )
            for ent in doc.ents
            if doc.ents
        ]
    )

    for span_type in additional_spans:
        results.extend(
            [
                _single_schema(
                    ent,
                    span_type=span_type,
                    extensions=extensions,
                )
                for ent in doc.spans[span_type]
                if doc.spans[span_type]
            ]
        )
    return results

pipe(note, nlp, context=[], additional_spans='discarded', extensions=[], batch_size=1000, progress_bar=True)

Function to apply a spaCy pipe to a pandas DataFrame note For a large DataFrame, prefer the parallel version.

PARAMETER DESCRIPTION
note

A pandas DataFrame with a note_id and note_text column

TYPE: DataFrame

nlp

A spaCy pipe

TYPE: Language

context

A list of column to add to the generated SpaCy document as an extension. For instance, if context=["note_datetime"], the corresponding value found in thenote_datetimecolumn will be stored indoc._.note_datetime, which can be useful e.g. for thedates` pipeline.

TYPE: List[str] DEFAULT: []

additional_spans

A name (or list of names) of SpanGroup on which to apply the pipe too: SpanGroup are available as doc.spans[spangroup_name] and can be generated by some pipes. For instance, the date pipe populates doc.spans['dates']

TYPE: Union[List[str], str], by default "discarded" DEFAULT: 'discarded'

extensions

Spans extensions to add to the extracted results: For instance, if extensions=["score_name"], the extracted result will include, for each entity, ent._.score_name.

TYPE: List[Tuple[str, T.DataType]], by default [] DEFAULT: []

batch_size

Batch size used by spaCy's pipe

TYPE: int, by default 1000 DEFAULT: 1000

progress_bar

Whether to display a progress bar or not

TYPE: bool DEFAULT: True

RETURNS DESCRIPTION
DataFrame

A pandas DataFrame with one line per extraction

Source code in edsnlp/processing/simple.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
def pipe(
    note: pd.DataFrame,
    nlp: Language,
    context: List[str] = [],
    additional_spans: Union[List[str], str] = "discarded",
    extensions: Union[List[str], str] = [],
    batch_size: int = 1000,
    progress_bar: bool = True,
):
    """
    Function to apply a spaCy pipe to a pandas DataFrame note
    For a large DataFrame, prefer the parallel version.

    Parameters
    ----------
    note : DataFrame
        A pandas DataFrame with a `note_id` and `note_text` column
    nlp : Language
        A spaCy pipe
    context : List[str]
        A list of column to add to the generated SpaCy document as an extension.
        For instance, if `context=["note_datetime"], the corresponding value found
        in the `note_datetime` column will be stored in `doc._.note_datetime`,
        which can be useful e.g. for the `dates` pipeline.
    additional_spans : Union[List[str], str], by default "discarded"
        A name (or list of names) of SpanGroup on which to apply the pipe too:
        SpanGroup are available as `doc.spans[spangroup_name]` and can be generated
        by some pipes. For instance, the `date` pipe populates doc.spans['dates']
    extensions : List[Tuple[str, T.DataType]], by default []
        Spans extensions to add to the extracted results:
        For instance, if `extensions=["score_name"]`, the extracted result
        will include, for each entity, `ent._.score_name`.
    batch_size : int, by default 1000
        Batch size used by spaCy's pipe
    progress_bar: bool, by default True
        Whether to display a progress bar or not

    Returns
    -------
    DataFrame
        A pandas DataFrame with one line per extraction
    """
    return pd.DataFrame(
        _flatten(
            _pipe_generator(
                note=note,
                nlp=nlp,
                context=context,
                additional_spans=additional_spans,
                extensions=extensions,
                batch_size=batch_size,
                progress_bar=progress_bar,
            )
        )
    )
Back to top