edsnlp.pipelines.qualifiers.reported_speech
factory
DEFAULT_CONFIG = dict(pseudo=None, preceding=None, following=None, quotation=None, verbs=None, attr='NORM', on_ents_only=True, within_ents=False, explain=False)
module-attribute
create_component(nlp, name, attr, pseudo, preceding, following, quotation, verbs, on_ents_only, within_ents, explain)
Source code in edsnlp/pipelines/qualifiers/reported_speech/factory.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
|
reported_speech
ReportedSpeech
Bases: Qualifier
Implements a reported speech detection algorithm.
The components looks for terms indicating patient statements, and quotations to detect patient speech.
PARAMETER | DESCRIPTION |
---|---|
nlp |
spaCy nlp pipeline to use for matching.
TYPE:
|
quotation |
String gathering all quotation cues.
TYPE:
|
verbs |
List of reported speech verbs.
TYPE:
|
following |
List of terms following a reported speech.
TYPE:
|
preceding |
List of terms preceding a reported speech.
TYPE:
|
filter_matches |
Whether to filter out overlapping matches.
TYPE:
|
attr |
spaCy's attribute to use: a string with the value "TEXT" or "NORM", or a dict with the key 'term_attr' we can also add a key for each regex.
TYPE:
|
on_ents_only |
Whether to look for matches around detected entities only. Useful for faster inference in downstream tasks.
TYPE:
|
within_ents |
Whether to consider cues within entities.
TYPE:
|
explain |
Whether to keep track of cues for each entity.
TYPE:
|
Source code in edsnlp/pipelines/qualifiers/reported_speech/reported_speech.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|
defaults = dict(following=following, preceding=preceding, verbs=verbs, quotation=quotation)
class-attribute
regex_matcher = RegexMatcher(attr=attr)
instance-attribute
within_ents = within_ents
instance-attribute
__init__(nlp, attr, pseudo, preceding, following, quotation, verbs, on_ents_only, within_ents, explain)
Source code in edsnlp/pipelines/qualifiers/reported_speech/reported_speech.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
set_extensions()
Source code in edsnlp/pipelines/qualifiers/reported_speech/reported_speech.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
|
load_verbs(verbs)
Conjugate reporting verbs to specific tenses (trhid person)
PARAMETER | DESCRIPTION |
---|---|
verbs |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
list_rep_verbs
|
Source code in edsnlp/pipelines/qualifiers/reported_speech/reported_speech.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
process(doc)
Finds entities related to reported speech.
PARAMETER | DESCRIPTION |
---|---|
doc |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
doc
|
Source code in edsnlp/pipelines/qualifiers/reported_speech/reported_speech.py
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
|