edsnlp.pipelines.qualifiers.history
factory
DEFAULT_CONFIG = dict(attr='NORM', history=patterns.history, termination=termination, use_sections=False, explain=False, on_ents_only=True)
module-attribute
create_component(nlp, name, history, termination, use_sections, attr, explain, on_ents_only)
Source code in edsnlp/pipelines/qualifiers/history/factory.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
|
patterns
history = ['antécédents', 'atcd', 'atcds', 'tacds', 'antécédent']
module-attribute
history
History
Bases: Qualifier
Implements an history detection algorithm.
The components looks for terms indicating history in the text.
PARAMETER | DESCRIPTION |
---|---|
nlp |
spaCy nlp pipeline to use for matching.
TYPE:
|
history |
List of terms indicating medical history reference.
TYPE:
|
termination |
List of syntagme termination terms.
TYPE:
|
use_sections |
Whether to use section pipeline to detect medical history section.
TYPE:
|
attr |
spaCy's attribute to use: a string with the value "TEXT" or "NORM", or a dict with the key 'term_attr' we can also add a key for each regex.
TYPE:
|
on_ents_only |
Whether to look for matches around detected entities only. Useful for faster inference in downstream tasks.
TYPE:
|
regex |
A dictionnary of regex patterns.
TYPE:
|
explain |
Whether to keep track of cues for each entity.
TYPE:
|
Source code in edsnlp/pipelines/qualifiers/history/history.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|
defaults = dict(history=history, termination=termination)
class-attribute
sections = use_sections and 'eds.sections' in nlp.pipe_names or 'sections' in nlp.pipe_names
instance-attribute
__init__(nlp, attr, history, termination, use_sections, explain, on_ents_only)
Source code in edsnlp/pipelines/qualifiers/history/history.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|
set_extensions()
Source code in edsnlp/pipelines/qualifiers/history/history.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
|
process(doc)
Finds entities related to history.
PARAMETER | DESCRIPTION |
---|---|
doc |
spaCy Doc object
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
doc
|
spaCy Doc object, annotated for history |
Source code in edsnlp/pipelines/qualifiers/history/history.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|