edsnlp.pipelines.ner.scores.sofa
sofa
Sofa
Bases: Score
Matcher component to extract the SOFA score
PARAMETER | DESCRIPTION |
---|---|
nlp |
The spaCy object.
TYPE:
|
score_name |
The name of the extracted score
TYPE:
|
regex |
A list of regexes to identify the SOFA score
TYPE:
|
attr |
Wether to match on the text ('TEXT') or on the normalized text ('CUSTOM_NORM')
TYPE:
|
method_regex |
Regex with capturing group to get the score extraction method (e.g. "à l'admission", "à 24H", "Maximum")
TYPE:
|
value_regex |
Regex to extract the score value
TYPE:
|
score_normalization |
Function that takes the "raw" value extracted from the
TYPE:
|
window |
Number of token to include after the score's mention to find the score's value
TYPE:
|
Source code in edsnlp/pipelines/ner/scores/sofa/sofa.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
method_regex = method_regex
instance-attribute
value_regex = value_regex
instance-attribute
__init__(nlp, score_name, regex, attr, method_regex, value_regex, score_normalization, window, verbose, ignore_excluded)
Source code in edsnlp/pipelines/ner/scores/sofa/sofa.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|
set_extensions()
Source code in edsnlp/pipelines/ner/scores/sofa/sofa.py
71 72 73 74 75 |
|
score_filtering(ents)
Extracts, if available, the value of the score.
Normalizes the score via the provided self.score_normalization
method.
PARAMETER | DESCRIPTION |
---|---|
ents |
List of spaCy's spans extracted by the score matcher
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
ents
|
List of spaCy's spans, with, if found, an added |
Source code in edsnlp/pipelines/ner/scores/sofa/sofa.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
|
factory
DEFAULT_CONFIG = dict(regex=patterns.regex, method_regex=patterns.method_regex, value_regex=patterns.value_regex, score_normalization=patterns.score_normalization_str, attr='NORM', window=20, verbose=0, ignore_excluded=False)
module-attribute
create_component(nlp, name, regex, method_regex, value_regex, score_normalization, attr, window, verbose, ignore_excluded)
Source code in edsnlp/pipelines/ner/scores/sofa/factory.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
patterns
regex = ['\\bsofa\\b']
module-attribute
method_regex = 'sofa.*?((?P<max>max\\w*)|(?P<vqheures>24h\\w*)|(?P<admission>admission\\w*))(?P<after_value>(.|\\n)*)'
module-attribute
value_regex = '.*?.[\\n\\W]*?(\\d+)[^h\\d]'
module-attribute
score_normalization_str = 'score_normalization.sofa'
module-attribute
score_normalization(extracted_score)
Sofa score normalization. If available, returns the integer value of the SOFA score.
Source code in edsnlp/pipelines/ner/scores/sofa/patterns.py
17 18 19 20 21 22 23 24 25 |
|