edsnlp.processing
helpers
DataFrames = None
module-attribute
spec = importlib.util.find_spec(module.value)
module-attribute
DataFrameModules
Bases: Enum
Source code in edsnlp/processing/helpers.py
9 10 11 12 |
|
PANDAS = 'pandas'
class-attribute
PYSPARK = 'pyspark.sql'
class-attribute
KOALAS = 'databricks.koalas'
class-attribute
get_module(df)
Source code in edsnlp/processing/helpers.py
26 27 28 29 |
|
check_spacy_version_for_context()
Source code in edsnlp/processing/helpers.py
32 33 34 35 36 37 38 39 40 41 |
|
simple
nlp = spacy.blank('fr')
module-attribute
ExtensionSchema = Union[str, List[str], Dict[str, Any]]
module-attribute
_df_to_spacy(note, nlp, context)
Takes a pandas DataFrame and return a generator that can be used in
nlp.pipe()
.
PARAMETER | DESCRIPTION |
---|---|
note |
A pandas DataFrame with at least
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
generator
|
A generator which items are of the form (text, context), with |
Source code in edsnlp/processing/simple.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
_flatten(list_of_lists)
Flatten a list of lists to a combined list.
Source code in edsnlp/processing/simple.py
64 65 66 67 68 |
|
_pipe_generator(note, nlp, context=[], additional_spans='discarded', extensions=[], batch_size=50, progress_bar=True)
Source code in edsnlp/processing/simple.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
|
_single_schema(ent, span_type='ents', extensions=[])
Source code in edsnlp/processing/simple.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
|
_full_schema(doc, additional_spans=[], extensions=[])
Function used when Parallelising tasks via joblib. Takes a Doc as input, and returns a list of serializable objects
Note
The parallelisation needs for output objects to be serializable: after splitting the task into separate jobs, intermediate results are saved on memory before being aggregated, thus the need to be serializable. For instance, spaCy's spans aren't serializable since they are merely a view of the parent document.
Check the source code of this function for an example.
Source code in edsnlp/processing/simple.py
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
pipe(note, nlp, context=[], additional_spans='discarded', extensions=[], batch_size=1000, progress_bar=True)
Function to apply a spaCy pipe to a pandas DataFrame note For a large DataFrame, prefer the parallel version.
PARAMETER | DESCRIPTION |
---|---|
note |
A pandas DataFrame with a
TYPE:
|
nlp |
A spaCy pipe
TYPE:
|
context |
A list of column to add to the generated SpaCy document as an extension.
For instance, if
TYPE:
|
additional_spans |
A name (or list of names) of SpanGroup on which to apply the pipe too:
SpanGroup are available as
TYPE:
|
extensions |
Spans extensions to add to the extracted results:
For instance, if
TYPE:
|
batch_size |
Batch size used by spaCy's pipe
TYPE:
|
progress_bar |
Whether to display a progress bar or not
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DataFrame
|
A pandas DataFrame with one line per extraction |
Source code in edsnlp/processing/simple.py
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
|
wrapper
pipe(note, nlp, n_jobs=-2, context=[], additional_spans='discarded', extensions=[], **kwargs)
Function to apply a spaCy pipe to a pandas or pyspark DataFrame
PARAMETER | DESCRIPTION |
---|---|
note |
A pandas/pyspark/koalas DataFrame with a
TYPE:
|
nlp |
A spaCy pipe
TYPE:
|
context |
A list of column to add to the generated SpaCy document as an extension.
For instance, if
TYPE:
|
n_jobs |
Only used when providing a Pandas DataFrame
TYPE:
|
additional_spans |
A name (or list of names) of SpanGroup on which to apply the pipe too:
SpanGroup are available as
TYPE:
|
extensions |
Spans extensions to add to the extracted results:
For instance, if
TYPE:
|
kwargs |
Additional parameters depending on the
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DataFrame
|
A DataFrame with one line per extraction |
Source code in edsnlp/processing/wrapper.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
parallel
nlp = spacy.blank('fr')
module-attribute
_define_nlp(new_nlp)
Set the global nlp variable Doing it this way saves non negligeable amount of time
Source code in edsnlp/processing/parallel.py
14 15 16 17 18 19 20 |
|
_chunker(iterable, total_length, chunksize)
Takes an iterable and chunk it.
Source code in edsnlp/processing/parallel.py
23 24 25 26 27 28 29 30 31 32 33 |
|
_process_chunk(note, **pipe_kwargs)
Source code in edsnlp/processing/parallel.py
36 37 38 39 40 41 42 43 |
|
pipe(note, nlp, context=[], additional_spans='discarded', extensions=[], chunksize=100, n_jobs=-2, progress_bar=True, **pipe_kwargs)
Function to apply a spaCy pipe to a pandas DataFrame note by using multiprocessing
PARAMETER | DESCRIPTION |
---|---|
note |
A pandas DataFrame with a
TYPE:
|
nlp |
A spaCy pipe
TYPE:
|
context |
A list of column to add to the generated SpaCy document as an extension.
For instance, if
TYPE:
|
additional_spans |
A name (or list of names) of SpanGroup on which to apply the pipe too:
SpanGroup are available as
TYPE:
|
extensions |
Spans extensions to add to the extracted results:
FOr instance, if
TYPE:
|
chunksize |
Batch size used to split tasks
TYPE:
|
n_jobs |
Max number of parallel jobs. The default value uses the maximum number of available cores.
TYPE:
|
progress_bar |
Whether to display a progress bar or not
TYPE:
|
**pipe_kwargs |
Arguments exposed in
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
DataFrame
|
A pandas DataFrame with one line per extraction |
Source code in edsnlp/processing/parallel.py
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
distributed
pyspark_type_finder(obj)
Returns (when possible) the PySpark type of any python object
Source code in edsnlp/processing/distributed.py
20 21 22 23 24 25 26 27 28 29 |
|
module_checker(func, *args, **kwargs)
Source code in edsnlp/processing/distributed.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
|
pipe(note, nlp, context=[], additional_spans='discarded', extensions=[])
Function to apply a spaCy pipe to a pyspark or koalas DataFrame note
PARAMETER | DESCRIPTION |
---|---|
note |
A Pyspark or Koalas DataFrame with a
TYPE:
|
nlp |
A spaCy pipe
TYPE:
|
context |
A list of column to add to the generated SpaCy document as an extension.
For instance, if
TYPE:
|
additional_spans |
A name (or list of names) of SpanGroup on which to apply the pipe too:
SpanGroup are available as
TYPE:
|
extensions |
Spans extensions to add to the extracted results:
FOr instance, if
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DataFrame
|
A pyspark DataFrame with one line per extraction |
Source code in edsnlp/processing/distributed.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
|