edsnlp.pipelines.core
sentences
terms
punctuation = ['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹', '।', '॥', '၊', '။', '።', '፧', '፨', '᙮', '᜵', '᜶', '᠃', '᠉', '᥄', '᥅', '᪨', '᪩', '᪪', '᪫', '᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿', '‼', '‽', '⁇', '⁈', '⁉', '⸮', '⸼', '꓿', '꘎', '꘏', '꛳', '꛷', '꡶', '꡷', '꣎', '꣏', '꤯', '꧈', '꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒', '﹖', '﹗', '!', '.', '?', '𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀', '𑃁', '𑅁', '𑅂', '𑅃', '𑇅', '𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼', '𑊩', '𑑋', '𑑌', '𑗂', '𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐', '𑗑', '𑗒', '𑗓', '𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂', '𑩃', '𑪛', '𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈', '。', '。']
module-attribute
sentences
SentenceSegmenter
Bases: object
Segments the Doc into sentences using a rule-based strategy, specific to AP-HP documents.
Applies the same rule-based pipeline as spaCy's sentencizer, and adds a simple rule on the new lines : if a new line is followed by a capitalised word, then it is also an end of sentence.
DOCS: https://spacy.io/api/sentencizer
Arguments
punct_chars : Optional[List[str]] Punctuation characters. use_endlines : bool Whether to use endlines prediction.
Source code in edsnlp/pipelines/core/sentences/sentences.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
punct_chars = set(punct_chars)
instance-attribute
use_endlines = use_endlines
instance-attribute
__init__(punct_chars, use_endlines)
Source code in edsnlp/pipelines/core/sentences/sentences.py
27 28 29 30 31 32 33 34 35 36 37 |
|
__call__(doc)
Segments the document in sentences.
Arguments
doc: A spacy Doc object.
RETURNS | DESCRIPTION |
---|---|
doc
|
A spaCy Doc object, annotated for sentences. |
Source code in edsnlp/pipelines/core/sentences/sentences.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
factory
DEFAULT_CONFIG = dict(punct_chars=None, use_endlines=True)
module-attribute
create_component(nlp, name, punct_chars, use_endlines)
Source code in edsnlp/pipelines/core/sentences/factory.py
15 16 17 18 19 20 21 22 23 24 25 26 |
|
matcher
matcher
GenericMatcher
Bases: BaseComponent
Provides a generic matcher component.
PARAMETER | DESCRIPTION |
---|---|
nlp |
The spaCy object.
TYPE:
|
terms |
A dictionary of terms.
TYPE:
|
regex |
A dictionary of regular expressions.
TYPE:
|
attr |
The default attribute to use for matching.
Can be overiden using the
TYPE:
|
filter_matches |
Whether to filter out matches.
TYPE:
|
on_ents_only |
Whether to to look for matches around pre-extracted entities only.
TYPE:
|
ignore_excluded |
Whether to skip excluded tokens (requires an upstream pipeline to mark excluded tokens).
TYPE:
|
Source code in edsnlp/pipelines/core/matcher/matcher.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
nlp = nlp
instance-attribute
attr = attr
instance-attribute
phrase_matcher = EDSPhraseMatcher(self.nlp.vocab, attr=attr, ignore_excluded=ignore_excluded)
instance-attribute
regex_matcher = RegexMatcher(attr=attr, ignore_excluded=ignore_excluded)
instance-attribute
__init__(nlp, terms, regex, attr, ignore_excluded)
Source code in edsnlp/pipelines/core/matcher/matcher.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
process(doc)
Find matching spans in doc.
PARAMETER | DESCRIPTION |
---|---|
doc |
spaCy Doc object.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
spans
|
List of Spans returned by the matchers. |
Source code in edsnlp/pipelines/core/matcher/matcher.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
__call__(doc)
Adds spans to document.
PARAMETER | DESCRIPTION |
---|---|
doc |
spaCy Doc object
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
doc
|
spaCy Doc object, annotated for extracted terms. |
Source code in edsnlp/pipelines/core/matcher/matcher.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
factory
DEFAULT_CONFIG = dict(terms=None, regex=None, attr='TEXT', ignore_excluded=False)
module-attribute
create_component(nlp, name, terms, attr, regex, ignore_excluded)
Source code in edsnlp/pipelines/core/matcher/factory.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
endlines
functional
_get_label(prediction)
Returns the label for the prediction PREDICTED_END_LINE
PARAMETER | DESCRIPTION |
---|---|
prediction |
value of
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str
|
Label for |
Source code in edsnlp/pipelines/core/endlines/functional.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
get_dir_path(file)
Source code in edsnlp/pipelines/core/endlines/functional.py
26 27 28 |
|
build_path(file, relative_path)
Function to build an absolut path.
PARAMETER | DESCRIPTION |
---|---|
file |
|
relative_path |
relative path from the main file to the desired output
|
RETURNS | DESCRIPTION |
---|---|
path
|
Source code in edsnlp/pipelines/core/endlines/functional.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
_convert_series_to_array(s)
Converts pandas series of n elements to an array of shape (n,1).
PARAMETER | DESCRIPTION |
---|---|
s |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
np.ndarray
|
Source code in edsnlp/pipelines/core/endlines/functional.py
50 51 52 53 54 55 56 57 58 59 60 61 62 |
|
endlines
EndLines
Bases: GenericMatcher
spaCy Pipeline to detect whether a newline character should be considered a space (ie introduced by the PDF).
The pipeline will add the extension end_line
to spans
and tokens. The end_line
attribute is a boolean or None
,
set to True
if the pipeline predicts that the new line
is an end line character. Otherwise, it is set to False
if the new line is classified as a space. If no classification
has been done over that token, it will remain None
.
PARAMETER | DESCRIPTION |
---|---|
nlp |
spaCy nlp pipeline to use for matching.
TYPE:
|
end_lines_model : Optional[Union[str, EndLinesModel]], by default None path to trained model. If None, it will use a default model
Source code in edsnlp/pipelines/core/endlines/endlines.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
__init__(nlp, end_lines_model, **kwargs)
Source code in edsnlp/pipelines/core/endlines/endlines.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
|
_read_model(end_lines_model)
PARAMETER | DESCRIPTION |
---|---|
end_lines_model |
TYPE:
|
RAISES | DESCRIPTION |
---|---|
TypeError
|
Source code in edsnlp/pipelines/core/endlines/endlines.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
|
_spacy_compute_a3a4(token)
Function to compute A3 and A4
PARAMETER | DESCRIPTION |
---|---|
token |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str
|
Source code in edsnlp/pipelines/core/endlines/endlines.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|
_compute_length(doc, start, end)
Compute length without spaces
PARAMETER | DESCRIPTION |
---|---|
doc |
TYPE:
|
start |
TYPE:
|
end |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
int
|
Source code in edsnlp/pipelines/core/endlines/endlines.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
_get_df(doc, new_lines)
Get a pandas DataFrame to call the classifier
PARAMETER | DESCRIPTION |
---|---|
doc |
TYPE:
|
new_lines |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
Source code in edsnlp/pipelines/core/endlines/endlines.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
__call__(doc)
Predict for each new line if it's an end of line or a space.
PARAMETER | DESCRIPTION |
---|---|
doc |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
doc
|
Source code in edsnlp/pipelines/core/endlines/endlines.py
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
factory
create_component(nlp, name, model_path)
Source code in edsnlp/pipelines/core/endlines/factory.py
10 11 12 13 14 15 16 17 |
|
endlinesmodel
EndLinesModel
Model to classify if an end line is a real one or it should be a space.
PARAMETER | DESCRIPTION |
---|---|
nlp |
spaCy nlp pipeline to use for matching.
TYPE:
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 |
|
nlp = nlp
instance-attribute
__init__(nlp)
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
28 29 |
|
_preprocess_data(corpus)
PARAMETER | DESCRIPTION |
---|---|
corpus |
Corpus of documents
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
Preprocessed data |
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
fit_and_predict(corpus)
Fit the model and predict for the training data
PARAMETER | DESCRIPTION |
---|---|
corpus |
An iterable of Documents
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
one line by end_line prediction |
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
predict(df)
Use the model for inference
The df should have the following columns:
["A1","A2","A3","A4","B1","B2","BLANK_LINE"]
PARAMETER | DESCRIPTION |
---|---|
df |
The df should have the following columns:
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
The result is added to the column |
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
|
save(path='base_model.pkl')
Save a pickle of the model. It could be read by the pipeline later.
PARAMETER | DESCRIPTION |
---|---|
path |
path to file .pkl, by default
TYPE:
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
213 214 215 216 217 218 219 220 221 222 223 |
|
_convert_A(df, col)
PARAMETER | DESCRIPTION |
---|---|
df |
TYPE:
|
col |
column to translate
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
_convert_B(df, col)
PARAMETER | DESCRIPTION |
---|---|
df |
[description]
TYPE:
|
col |
column to translate
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
[description] |
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
|
_convert_raw_data_to_codes(df)
Function to translate data as extracted from spacy to the model codes.
A1
and A2
are not translated cause are supposed to be already
in good encoding.
PARAMETER | DESCRIPTION |
---|---|
df |
It should have columns
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
|
_convert_line_to_attribute(df, expr, col)
Function to convert a line into an attribute (column) of the previous row. Particularly we use it to identify "\n" and "\n\n" that are considered tokens, express this information as an attribute of the previous token.
PARAMETER | DESCRIPTION |
---|---|
df |
TYPE:
|
expr |
pattern to search in the text. Ex.: "\n"
TYPE:
|
col |
name of the new column
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
_compute_a3(df)
A3 (A4 respectively): typographic form of left word (or right) :
- All in capital letter
- It starts with a capital letter
- Starts by lowercase
- It's a number
- Strong punctuation
- Soft punctuation
- A number followed or preced by a punctuation (it's the case of enumerations)
PARAMETER | DESCRIPTION |
---|---|
df |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
df
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
|
_fit_M1(A1, A2, A3, A4, label)
Function to train M1 classifier (Naive Bayes)
PARAMETER | DESCRIPTION |
---|---|
A1 |
[description]
TYPE:
|
A2 |
[description]
TYPE:
|
A3 |
[description]
TYPE:
|
A4 |
[description]
TYPE:
|
label |
[description]
TYPE:
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
|
_fit_M2(B1, B2, label)
Function to train M2 classifier (Naive Bayes)
PARAMETER | DESCRIPTION |
---|---|
B1 |
TYPE:
|
B2 |
TYPE:
|
label |
TYPE:
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
|
_get_X_for_M1(A1, A2, A3, A4)
Get X matrix for classifier
PARAMETER | DESCRIPTION |
---|---|
A1 |
TYPE:
|
A2 |
TYPE:
|
A3 |
TYPE:
|
A4 |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
np.ndarray
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
|
_get_X_for_M2(B1, B2)
Get X matrix for classifier
PARAMETER | DESCRIPTION |
---|---|
B1 |
TYPE:
|
B2 |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
np.ndarray
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
|
_predict_M1(A1, A2, A3, A4)
Use M1 for prediction
PARAMETER | DESCRIPTION |
---|---|
A1 |
TYPE:
|
A2 |
TYPE:
|
A3 |
TYPE:
|
A4 |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, Any]
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
|
_predict_M2(B1, B2)
Use M2 for prediction
PARAMETER | DESCRIPTION |
---|---|
B1 |
TYPE:
|
B2 |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Dict[str, Any]
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
|
_fit_encoder_2S(S1, S2)
Fit a one hot encoder with 2 Series. It concatenates the series and after it fits.
PARAMETER | DESCRIPTION |
---|---|
S1 |
TYPE:
|
S2 |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
OneHotEncoder
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
|
_fit_encoder_1S(S1)
Fit a one hot encoder with 1 Series.
PARAMETER | DESCRIPTION |
---|---|
S1 |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
OneHotEncoder
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
|
_encode_series(encoder, S)
Use the one hot encoder to transform a series.
PARAMETER | DESCRIPTION |
---|---|
encoder |
TYPE:
|
S |
a series to encode (transform)
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
np.ndarray
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
|
set_spans(corpus, df)
Function to set the results of the algorithm (pd.DataFrame) as spans of the spaCy document.
PARAMETER | DESCRIPTION |
---|---|
corpus |
Iterable of spaCy Documents
TYPE:
|
df |
It should have the columns: ["DOC_ID","original_token_index","PREDICTED_END_LINE"]
TYPE:
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
|
_retrieve_lines(dfg)
Function to give a sentence_id to each token.
PARAMETER | DESCRIPTION |
---|---|
dfg |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DataFrameGroupBy
|
Same DataFrameGroupBy with the column |
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
|
_create_vocabulary(x)
Function to create a vocabulary for attributes in the training set.
PARAMETER | DESCRIPTION |
---|---|
x |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
|
_compute_B(df)
Function to compute B1 and B2
PARAMETER | DESCRIPTION |
---|---|
df |
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
|
_shift_col(df, col, new_col, direction='backward', fill=None)
Shifts a column one position into backward / forward direction.
PARAMETER | DESCRIPTION |
---|---|
df |
TYPE:
|
col |
column to shift
TYPE:
|
new_col |
column name to save the results
TYPE:
|
direction |
one of {"backward", "forward"}, by default "backward"
TYPE:
|
fill |
, by default None
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
same df with |
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
|
_get_attributes(doc, i=0)
Function to get the attributes of tokens of a spacy doc in a pd.DataFrame format.
PARAMETER | DESCRIPTION |
---|---|
doc |
spacy Doc
TYPE:
|
i |
document id, by default 0
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
Returns a dataframe with one line per token. It has the following columns :
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 |
|
_get_string(_id, string_store)
Returns the string corresponding to the token_id
PARAMETER | DESCRIPTION |
---|---|
_id |
token id
TYPE:
|
string_store |
spaCy Language String Store
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
str
|
string representation of the token. |
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
|
_fit_one_hot_encoder(X)
Fit a one hot encoder.
PARAMETER | DESCRIPTION |
---|---|
X |
of shape (n,1)
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
OneHotEncoder
|
Source code in edsnlp/pipelines/core/endlines/endlinesmodel.py
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 |
|
context
context
ContextAdder
Bases: BaseComponent
Provides a generic context adder component.
PARAMETER | DESCRIPTION |
---|---|
nlp |
The spaCy object.
TYPE:
|
context |
The list of extensions to add to the
TYPE:
|
Source code in edsnlp/pipelines/core/context/context.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
nlp = nlp
instance-attribute
context = context
instance-attribute
__init__(nlp, context)
Source code in edsnlp/pipelines/core/context/context.py
21 22 23 24 25 26 27 28 29 |
|
set_extensions()
Source code in edsnlp/pipelines/core/context/context.py
31 32 33 34 |
|
__call__(doc)
Source code in edsnlp/pipelines/core/context/context.py
36 37 |
|
factory
DEFAULT_CONFIG = dict(context=['note_id'])
module-attribute
create_component(nlp, name, context)
Source code in edsnlp/pipelines/core/context/factory.py
12 13 14 15 16 17 18 19 20 21 22 |
|
normalizer
normalizer
Normalizer
Bases: object
Normalisation pipeline. Modifies the NORM
attribute,
acting on four dimensions :
lowercase
: using the defaultNORM
accents
: deterministic and fixed-length normalisation of accents.quotes
: deterministic and fixed-length normalisation of quotation marks.pollution
: removal of pollutions.
PARAMETER | DESCRIPTION |
---|---|
lowercase |
Whether to remove case.
TYPE:
|
accents |
Optional
TYPE:
|
quotes |
Optional
TYPE:
|
pollution |
Optional
TYPE:
|
Source code in edsnlp/pipelines/core/normalizer/normalizer.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
lowercase = lowercase
instance-attribute
accents = accents
instance-attribute
quotes = quotes
instance-attribute
pollution = pollution
instance-attribute
__init__(lowercase, accents, quotes, pollution)
Source code in edsnlp/pipelines/core/normalizer/normalizer.py
33 34 35 36 37 38 39 40 41 42 43 |
|
__call__(doc)
Apply the normalisation pipeline, one component at a time.
PARAMETER | DESCRIPTION |
---|---|
doc |
spaCy
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Doc
|
Doc object with |
Source code in edsnlp/pipelines/core/normalizer/normalizer.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
factory
DEFAULT_CONFIG = dict(accents=True, lowercase=True, quotes=True, pollution=True)
module-attribute
create_component(nlp, name, accents, lowercase, quotes, pollution)
Source code in edsnlp/pipelines/core/normalizer/factory.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
|
pollution
patterns
information = "(?s)(=====+\\s*)?(L\\s*e\\s*s\\sdonnées\\s*administratives,\\s*sociales\\s*|I?nfo\\s*rmation\\s*aux?\\s*patients?|L[’']AP-HP\\s*collecte\\s*vos\\s*données\\s*administratives|L[’']Assistance\\s*Publique\\s*-\\s*Hôpitaux\\s*de\\s*Paris\\s*\\(?AP-HP\\)?\\s*a\\s*créé\\s*une\\s*base\\s*de\\s*données).{,2000}https?:\\/\\/recherche\\.aphp\\.fr\\/eds\\/droit-opposition[\\s\\.]*"
module-attribute
bars = '(?i)([nbw]|_|-|=){5,}'
module-attribute
pollution = dict(information=information, bars=bars)
module-attribute
pollution
Pollution
Bases: BaseComponent
Tags pollution tokens.
Populates a number of spaCy extensions :
Token._.pollution
: indicates whether the token is a pollutionDoc._.clean
: lists non-pollution tokensDoc._.clean_
: original text with pollutions removed.Doc._.char_clean_span
: method to create a Span using character indices extracted using the cleaned text.
PARAMETER | DESCRIPTION |
---|---|
nlp |
Language pipeline object
TYPE:
|
pollution |
Dictionary containing regular expressions of pollution.
TYPE:
|
Source code in edsnlp/pipelines/core/normalizer/pollution/pollution.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
|
nlp = nlp
instance-attribute
pollution = pollution
instance-attribute
regex_matcher = RegexMatcher()
instance-attribute
__init__(nlp, pollution)
Source code in edsnlp/pipelines/core/normalizer/pollution/pollution.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|
build_patterns()
Builds the patterns for phrase matching.
Source code in edsnlp/pipelines/core/normalizer/pollution/pollution.py
54 55 56 57 58 59 60 61 |
|
process(doc)
Find pollutions in doc and clean candidate negations to remove pseudo negations
PARAMETER | DESCRIPTION |
---|---|
doc |
spaCy Doc object
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pollution
|
list of pollution spans |
Source code in edsnlp/pipelines/core/normalizer/pollution/pollution.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
__call__(doc)
Tags pollutions.
PARAMETER | DESCRIPTION |
---|---|
doc |
spaCy Doc object
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
doc
|
spaCy Doc object, annotated for pollutions. |
Source code in edsnlp/pipelines/core/normalizer/pollution/pollution.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
|
factory
DEFAULT_CONFIG = dict(pollution=None)
module-attribute
create_component(nlp, name, pollution)
Source code in edsnlp/pipelines/core/normalizer/pollution/factory.py
14 15 16 17 18 19 20 21 22 23 24 |
|
accents
patterns
accents: List[Tuple[str, str]] = [('ç', 'c'), ('àáâä', 'a'), ('èéêë', 'e'), ('ìíîï', 'i'), ('òóôö', 'o'), ('ùúûü', 'u')]
module-attribute
accents
Accents
Bases: object
Normalises accents, using a same-length strategy.
PARAMETER | DESCRIPTION |
---|---|
accents |
List of accentuated characters and their transcription.
TYPE:
|
Source code in edsnlp/pipelines/core/normalizer/accents/accents.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
translation_table = str.maketrans(''.join(accent_group for (accent_group, _) in accents), ''.join(rep * len(accent_group) for (accent_group, rep) in accents))
instance-attribute
__init__(accents)
Source code in edsnlp/pipelines/core/normalizer/accents/accents.py
18 19 20 21 22 23 24 25 |
|
__call__(doc)
Remove accents from spacy NORM
attribute.
PARAMETER | DESCRIPTION |
---|---|
doc |
The spaCy
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Doc
|
The document, with accents removed in |
Source code in edsnlp/pipelines/core/normalizer/accents/accents.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
factory
DEFAULT_CONFIG = dict(accents=None)
module-attribute
create_component(nlp, name, accents)
Source code in edsnlp/pipelines/core/normalizer/accents/factory.py
14 15 16 17 18 19 20 21 22 23 |
|
lowercase
factory
remove_lowercase(doc)
Add case on the NORM
custom attribute. Should always be applied first.
PARAMETER | DESCRIPTION |
---|---|
doc |
The spaCy
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Doc
|
The document, with case put back in |
Source code in edsnlp/pipelines/core/normalizer/lowercase/factory.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|
quotes
quotes
Quotes
Bases: object
We normalise quotes, following this
source <https://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html>
_.
PARAMETER | DESCRIPTION |
---|---|
quotes |
List of quotation characters and their transcription.
TYPE:
|
Source code in edsnlp/pipelines/core/normalizer/quotes/quotes.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|
translation_table = str.maketrans(''.join(quote_group for (quote_group, _) in quotes), ''.join(rep * len(quote_group) for (quote_group, rep) in quotes))
instance-attribute
__init__(quotes)
Source code in edsnlp/pipelines/core/normalizer/quotes/quotes.py
19 20 21 22 23 24 25 26 |
|
__call__(doc)
Normalises quotes.
PARAMETER | DESCRIPTION |
---|---|
doc |
Document to process.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Doc
|
Same document, with quotes normalised. |
Source code in edsnlp/pipelines/core/normalizer/quotes/quotes.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|
patterns
quotes: List[str] = ['"', '〃', 'ײ', '᳓', '″', '״', '‶', '˶', 'ʺ', '“', '”', '˝', '‟']
module-attribute
apostrophes: List[str] = ['`', '΄', ''', 'ˈ', 'ˊ', 'ᑊ', 'ˋ', 'ꞌ', 'ᛌ', '𖽒', '𖽑', '‘', '’', 'י', '՚', '‛', '՝', '`', '`', '′', '׳', '´', 'ʹ', '˴', 'ߴ', '‵', 'ߵ', 'ʹ', 'ʻ', 'ʼ', '´', '᾽', 'ʽ', '῾', 'ʾ', '᾿']
module-attribute
quotes_and_apostrophes: List[Tuple[str, str]] = [(''.join(quotes), '"'), (''.join(apostrophes), "'")]
module-attribute
factory
DEFAULT_CONFIG = dict(quotes=None)
module-attribute
create_component(nlp, name, quotes)
Source code in edsnlp/pipelines/core/normalizer/quotes/factory.py
14 15 16 17 18 19 20 21 22 23 |
|
advanced
factory
DEFAULT_CONFIG = dict(window=10, verbose=0, ignore_excluded=False, attr='NORM')
module-attribute
create_component(nlp, name, regex_config, window, verbose, ignore_excluded, attr)
Source code in edsnlp/pipelines/core/advanced/factory.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
advanced
AdvancedRegex
Bases: GenericMatcher
Allows additional matching in the surrounding context of the main match group, for qualification/filtering.
PARAMETER | DESCRIPTION |
---|---|
nlp |
spaCy
TYPE:
|
regex_config |
Configuration for the main expression.
TYPE:
|
window |
Number of tokens to consider before and after the main expression.
TYPE:
|
attr |
Attribute to match on, eg
TYPE:
|
verbose |
Verbosity level, useful for debugging.
TYPE:
|
ignore_excluded |
Whether to skip excluded tokens.
TYPE:
|
Source code in edsnlp/pipelines/core/advanced/advanced.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
regex_config = _check_regex_config(regex_config)
instance-attribute
window = window
instance-attribute
verbose = verbose
instance-attribute
ignore_excluded = ignore_excluded
instance-attribute
__init__(nlp, regex_config, window, attr, verbose, ignore_excluded)
Source code in edsnlp/pipelines/core/advanced/advanced.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
|
set_extensions()
Source code in edsnlp/pipelines/core/advanced/advanced.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
process(doc)
Process the document, looking for named entities.
PARAMETER | DESCRIPTION |
---|---|
doc |
spaCy Doc object
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[Span]
|
List of detected spans. |
Source code in edsnlp/pipelines/core/advanced/advanced.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
__call__(doc)
Adds spans to document.
PARAMETER | DESCRIPTION |
---|---|
doc |
spaCy Doc object
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
doc
|
spaCy Doc object, annotated for extracted terms. |
Source code in edsnlp/pipelines/core/advanced/advanced.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
_postprocessing_pipeline(ents)
Source code in edsnlp/pipelines/core/advanced/advanced.py
129 130 131 132 133 134 135 136 137 138 139 |
|
_add_window(ent)
Source code in edsnlp/pipelines/core/advanced/advanced.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
get_text(span, label)
Source code in edsnlp/pipelines/core/advanced/advanced.py
158 159 160 161 162 163 164 165 |
|
_exclude_filter(ent)
Source code in edsnlp/pipelines/core/advanced/advanced.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
_snippet_extraction(ent)
Source code in edsnlp/pipelines/core/advanced/advanced.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|
_check_regex_config(regex_config)
Source code in edsnlp/pipelines/core/advanced/advanced.py
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
|