Endlines
The eds.endlines
component classifies newline characters as actual end of lines or mere spaces. In the latter case, the token is removed from the normalised document.
Behind the scenes, it uses a endlinesmodel
instance, which is an unsupervised algorithm based on the work of Zweigenbaum et al., 2016.
Training
import edsnlp
from edsnlp.pipes.core.endlines.model import EndLinesModel
nlp = edsnlp.blank("eds")
texts = [
"""
Le patient est arrivé hier soir.
Il est accompagné par son fils
ANTECEDENTS
Il a fait une TS en 2010
Fumeur, il est arreté il a 5 mois
Chirurgie de coeur en 2011
CONCLUSION
Il doit prendre
le medicament indiqué 3 fois par jour. Revoir médecin
dans 1 mois.
DIAGNOSTIC :
Antecedents Familiaux:
- 1. Père avec diabete
""",
"""
J'aime le
fromage...
""",
]
docs = list(nlp.pipe(texts))
# Train and predict an EndLinesModel
endlines = EndLinesModel(nlp=nlp)
df = endlines.fit_and_predict(docs)
df.head()
PATH = "/tmp/path_to_save"
endlines.save(PATH)
Examples
import edsnlp
from spacy.tokens import Span
from spacy import displacy
nlp = edsnlp.blank("eds")
PATH = "/tmp/path_to_save"
nlp.add_pipe("eds.endlines", config=dict(model_path=PATH))
docs = list(nlp.pipe(texts))
doc_exemple = docs[1]
doc_exemple.ents = tuple(
Span(doc_exemple, token.i, token.i + 1, "excluded")
for token in doc_exemple
if token.tag_ == "EXCLUDED"
)
displacy.render(doc_exemple, style="ent", options={"colors": {"space": "red"}})
Extensions
The eds.endlines
pipeline declares one extension, on both Span
and Token
objects. The end_line
attribute is a boolean, set to True
if the pipeline predicts that the new line is an end line character. Otherwise, it is set to False
if the new line is classified as a space.
The pipeline also sets the excluded
custom attribute on newlines that are classified as spaces. It lets downstream matchers skip excluded tokens (see normalisation) for more detail.
Parameters
PARAMETER | DESCRIPTION |
---|---|
nlp | The pipeline object. TYPE: |
name | The name of the component.
|
model_path | Path to trained model. If None, it will use a default model TYPE: |
Authors and citation
The eds.endlines
pipeline was developed by AP-HP's Data Science team based on the work of Zweigenbaum et al., 2016.
Zweigenbaum P., Grouin C. and Lavergne T., 2016. Une catégorisation de fins de lignes non-supervisée (End-of-line classification with no supervision).