COPD
The eds.copd
pipeline component extracts mentions of COPD (Chronic obstructive pulmonary disease). It will notably match:
- Mentions of various diseases (see below)
- Pulmonary hypertension
- Long-term oxygen therapy
Details of the used patterns
# fmt: off
# fmt: on
Extensions
On each span span
that match, the following attributes are available:
span._.detailed_status
: set to"PRESENT"
Examples
import edsnlp
nlp = edsnlp.blank("eds")
nlp.add_pipe("eds.sentences")
nlp.add_pipe(
"eds.normalizer",
config=dict(
accents=True,
lowercase=True,
quotes=True,
spaces=True,
pollution=dict(
information=True,
bars=True,
biology=True,
doctors=True,
web=True,
coding=True,
footer=True,
),
),
)
nlp.add_pipe(f"eds.copd")
Below are a few examples:
text = "Une fibrose interstitielle diffuse idiopathique"
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: [fibrose interstitielle diffuse idiopathique]
text = "Patient atteint de pneumoconiose"
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: [pneumoconiose]
text = "Présence d'une HTAP."
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: [HTAP]
text = "On voit une hypertension pulmonaire minime"
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: []
text = "La patiente a été mis sous oxygénorequérance"
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: []
text = "La patiente est sous oxygénorequérance au long cours"
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: [oxygénorequérance au long cours]
span = spans[0]
span._.assigned
# Out: {'long': [long cours]}
Parameters
PARAMETER | DESCRIPTION |
---|---|
nlp | The pipeline TYPE: |
name | The name of the component TYPE: |
patterns | The patterns to use for matching TYPE: |
label | The label to use for the TYPE: |
span_setter | How to set matches on the doc TYPE: |
Authors and citation
The eds.copd
component was developed by AP-HP's Data Science team with a team of medical experts. A paper describing in details the development of those components is being drafted and will soon be available.