Peptic ulcer disease[source]
The eds.peptic_ulcer_disease
pipeline component extracts mentions of peptic ulcer disease.
Details of the used patterns
# fmt: off
main_pattern = dict(
source="main",
regex=[
r"ulcere.{1,10}gastr",
r"ulcere.{1,10}duoden",
r"ulcere.{1,10}antra",
r"ulcere.{1,10}pept",
r"ulcere.{1,10}estomac",
r"ulcere.{1,10}curling",
r"ulcere.{1,10}bulb",
r"(œ|oe)sophagites.{1,5}pepti.{1,10}ulcer",
r"gastrite.{1,20}ulcer",
r"antrite.{1,5}ulcer",
],
regex_attr="NORM",
)
acronym = dict(
source="acronym",
regex=[
r"\bUGD\b",
],
regex_attr="TEXT",
)
generic = dict(
source="generic",
regex=r"ulcere",
regex_attr="NORM",
assign=dict(
name="is_peptic",
regex=r"\b(gastr|digest)",
window=(-20, 20),
limit_to_sentence=False,
),
)
default_patterns = [
main_pattern,
acronym,
generic,
]
# fmt: on
Extensions
On each span span
that matches, the following attributes are available:
span._.detailed_status
: set to None
Examples
import edsnlp, edsnlp.pipes as eds
nlp = edsnlp.blank("eds")
nlp.add_pipe(eds.sentences())
nlp.add_pipe(
eds.normalizer(
accents=True,
lowercase=True,
quotes=True,
spaces=True,
pollution=dict(
information=True,
bars=True,
biology=True,
doctors=True,
web=True,
coding=True,
footer=True,
),
),
)
nlp.add_pipe(eds.peptic_ulcer_disease())
Below are a few examples:
text = "Beaucoup d'ulcères gastriques"
doc = nlp(text)
spans = doc.spans["peptic_ulcer_disease"]
spans
# Out: [ulcères gastriques]
text = "Présence d'UGD"
doc = nlp(text)
spans = doc.spans["peptic_ulcer_disease"]
spans
# Out: [UGD]
text = "La patient à des ulcères"
doc = nlp(text)
spans = doc.spans["peptic_ulcer_disease"]
spans
# Out: []
text = "Au niveau gastrique: blabla blabla blabla blabla blabla quelques ulcères"
doc = nlp(text)
spans = doc.spans["peptic_ulcer_disease"]
spans
# Out: [ulcères]
span = spans[0]
span._.assigned
# Out: {'is_peptic': [gastrique]}
Parameters
PARAMETER | DESCRIPTION |
---|---|
nlp | The pipeline object TYPE: |
name | The name of the component TYPE: |
patterns | The patterns to use for matching DEFAULT: |
label | The label to use for the TYPE: |
span_setter | How to set matches on the doc TYPE: |
Authors and citation
The eds.peptic_ulcer_disease
component was developed by AP-HP's Data Science team with a team of medical experts, following the insights of the algorithm proposed by Petit-Jean et al., 2024.
Petit-Jean T., Gérardin C., Berthelot E., Chatellier G., Frank M., Tannier X., Kempf E. and Bey R., 2024. Collaborative and privacy-enhancing workflows on a clinical data warehouse: an example developing natural language processing pipelines to detect medical conditions. Journal of the American Medical Informatics Association. 31, pp.1280-1290. 10.1093/jamia/ocae069