Hemiplegia[source]
The eds.hemiplegia
pipeline component extracts mentions of hemiplegia.
Details of the used patterns
# fmt: off
main_pattern = dict(
source="main",
regex=[
r"hemiplegi",
r"tetraplegi",
r"quadriplegi",
r"paraplegi",
r"neuropathie.{1,25}motrice.{1,30}type [5V]",
r"charcot.?marie.?tooth",
r"locked.?in",
r"syndrome.{1,5}(enfermement|verrouillage)|(desafferen)",
r"paralysie.{1,10}hemicorps",
r"paralysie.{1,10}jambe",
r"paralysie.{1,10}membre",
r"paralysie.{1,10}cote",
r"paralysie.{1,5}cerebrale.{1,5}spastique",
],
regex_attr="NORM",
)
acronym = dict(
source="acronym",
regex=[
r"\bLIS\b",
r"\bNMSH\b",
],
regex_attr="TEXT",
)
default_patterns = [
main_pattern,
acronym,
]
# fmt: on
Extensions
On each span span
that match, the following attributes are available:
span._.detailed_status
: set to None
Examples
import edsnlp, edsnlp.pipes as eds
nlp = edsnlp.blank("eds")
nlp.add_pipe(eds.sentences())
nlp.add_pipe(
eds.normalizer(
accents=True,
lowercase=True,
quotes=True,
spaces=True,
pollution=dict(
information=True,
bars=True,
biology=True,
doctors=True,
web=True,
coding=True,
footer=True,
),
),
)
nlp.add_pipe(eds.hemiplegia())
Below are a few examples:
text = "Patient hémiplégique"
doc = nlp(text)
spans = doc.spans["hemiplegia"]
spans
# Out: [hémiplégique]
text = "Paralysie des membres inférieurs"
doc = nlp(text)
spans = doc.spans["hemiplegia"]
spans
# Out: [Paralysie des membres]
text = "Patient en LIS"
doc = nlp(text)
spans = doc.spans["hemiplegia"]
spans
# Out: [LIS]
Parameters
PARAMETER | DESCRIPTION |
---|---|
nlp | The pipeline TYPE: |
name | The name of the component TYPE: |
patterns | The patterns to use for matching TYPE: |
label | The label to use for the TYPE: |
span_setter | How to set matches on the doc TYPE: |
Authors and citation
The eds.hemiplegia
component was developed by AP-HP's Data Science team with a team of medical experts, following the insights of the algorithm proposed by Petit-Jean et al., 2024.
Petit-Jean T., Gérardin C., Berthelot E., Chatellier G., Frank M., Tannier X., Kempf E. and Bey R., 2024. Collaborative and privacy-enhancing workflows on a clinical data warehouse: an example developing natural language processing pipelines to detect medical conditions. Journal of the American Medical Informatics Association. 31, pp.1280-1290. 10.1093/jamia/ocae069