COPD[source]
The eds.copd
pipeline component extracts mentions of COPD (Chronic obstructive pulmonary disease). It will notably match:
- Mentions of various diseases (see below)
- Pulmonary hypertension
- Long-term oxygen therapy
Details of the used patterns
# fmt: off
# fmt: on
Extensions
On each span span
that match, the following attributes are available:
span._.detailed_status
: set to None
Examples
import edsnlp, edsnlp.pipes as eds
nlp = edsnlp.blank("eds")
nlp.add_pipe(eds.sentences())
nlp.add_pipe(
eds.normalizer(
accents=True,
lowercase=True,
quotes=True,
spaces=True,
pollution=dict(
information=True,
bars=True,
biology=True,
doctors=True,
web=True,
coding=True,
footer=True,
),
),
)
nlp.add_pipe(eds.copd())
Below are a few examples:
text = "Une fibrose interstitielle diffuse idiopathique"
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: [fibrose interstitielle diffuse idiopathique]
text = "Patient atteint de pneumoconiose"
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: [pneumoconiose]
text = "Présence d'une HTAP."
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: [HTAP]
text = "On voit une hypertension pulmonaire minime"
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: []
text = "La patiente a été mis sous oxygénorequérance"
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: []
text = "La patiente est sous oxygénorequérance au long cours"
doc = nlp(text)
spans = doc.spans["copd"]
spans
# Out: [oxygénorequérance au long cours]
span = spans[0]
span._.assigned
# Out: {'long': [long cours]}
Parameters
PARAMETER | DESCRIPTION |
---|---|
nlp | The pipeline TYPE: |
name | The name of the component TYPE: |
patterns | The patterns to use for matching DEFAULT: |
label | The label to use for the TYPE: |
span_setter | How to set matches on the doc TYPE: |
Authors and citation
The eds.copd
component was developed by AP-HP's Data Science team with a team of medical experts, following the insights of the algorithm proposed by Petit-Jean et al., 2024.
Petit-Jean T., Gérardin C., Berthelot E., Chatellier G., Frank M., Tannier X., Kempf E. and Bey R., 2024. Collaborative and privacy-enhancing workflows on a clinical data warehouse: an example developing natural language processing pipelines to detect medical conditions. Journal of the American Medical Informatics Association. 31, pp.1280-1290. 10.1093/jamia/ocae069