CKD[source]
The eds.CKD
pipeline component extracts mentions of CKD (Chronic Kidney Disease). It will notably match:
- Mentions of various diseases (see below)
- Kidney transplantation
- Chronic dialysis
- Renal failure from stage 3 to 5. The stage is extracted by trying 3 methods:
- Extracting the mentioned stage directly ("IRC stade IV")
- Extracting the severity directly ("IRC terminale")
- Extracting the mentioned GFR (DFG in french) ("IRC avec DFG estimé à 30 mL/min/1,73m2)")
Details of the used patterns
# fmt: off
# fmt: on
Extensions
On each span span
that match, the following attributes are available:
span._.detailed_status
: set to Nonespan._.assigned
: dictionary with the following keys, if relevant:stage
: mentioned renal failure stagestatus
: mentioned renal failure severity (e.g. modérée, sévère, terminale, etc.)dfg
: mentioned DFG
Examples
import edsnlp, edsnlp.pipes as eds
nlp = edsnlp.blank("eds")
nlp.add_pipe(eds.sentences())
nlp.add_pipe(
eds.normalizer(
accents=True,
lowercase=True,
quotes=True,
spaces=True,
pollution=dict(
information=True,
bars=True,
biology=True,
doctors=True,
web=True,
coding=True,
footer=True,
),
),
)
nlp.add_pipe(eds.ckd())
Below are a few examples:
text = "Patient atteint d'une glomérulopathie."
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: [glomérulopathie]
text = "Patient atteint d'une tubulopathie aigüe."
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: []
text = "Patient transplanté rénal"
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: [transplanté rénal]
text = "Présence d'une insuffisance rénale aigüe sur chronique"
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: [insuffisance rénale aigüe sur chronique]
text = "Le patient a été dialysé"
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: []
text = "Le patient est dialysé chaque lundi"
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: [dialysé chaque lundi]
span = spans[0]
span._.assigned
# Out: {'chronic': [lundi]}
text = "Présence d'une IRC"
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: []
text = "Présence d'une IRC sévère"
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: [IRC sévère]
span = spans[0]
span._.assigned
# Out: {'status': sévère}
text = "Présence d'une IRC au stade IV"
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: [IRC au stade IV]
span = spans[0]
span._.assigned
# Out: {'stage': IV}
text = "Présence d'une IRC avec DFG à 30"
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: [IRC avec DFG à 30]
span = spans[0]
span._.assigned
# Out: {'dfg': 30}
text = "Présence d'une maladie rénale avec DFG à 110"
doc = nlp(text)
spans = doc.spans["ckd"]
spans
# Out: []
Parameters
PARAMETER | DESCRIPTION |
---|---|
nlp | The pipeline TYPE: |
name | The name of the component TYPE: |
patterns | The patterns to use for matching DEFAULT: |
label | The label to use for the TYPE: |
span_setter | How to set matches on the doc TYPE: |
Authors and citation
The eds.ckd
component was developed by AP-HP's Data Science team with a team of medical experts, following the insights of the algorithm proposed by Petit-Jean et al., 2024.
Petit-Jean T., Gérardin C., Berthelot E., Chatellier G., Frank M., Tannier X., Kempf E. and Bey R., 2024. Collaborative and privacy-enhancing workflows on a clinical data warehouse: an example developing natural language processing pipelines to detect medical conditions. Journal of the American Medical Informatics Association. 31, pp.1280-1290. 10.1093/jamia/ocae069