Skip to content

edsnlp.processing.distributed

pyspark_type_finder(obj)

Returns (when possible) the PySpark type of any python object

Source code in edsnlp/processing/distributed.py
24
25
26
27
28
29
30
31
32
33
def pyspark_type_finder(obj):
    """
    Returns (when possible) the PySpark type of any python object
    """
    try:
        inferred_type = T._infer_type(obj)
        logger.info(f"Inferred type is {repr(inferred_type)}")
        return inferred_type
    except TypeError:
        raise TypeError("Cannot infer type for this object.")

pipe(note, nlp, context=[], additional_spans='discarded', extensions={})

Function to apply a spaCy pipe to a pyspark or koalas DataFrame note

PARAMETER DESCRIPTION
note

A Pyspark or Koalas DataFrame with a note_id and note_text column

TYPE: DataFrame

nlp

A spaCy pipe

TYPE: Language

context

A list of column to add to the generated SpaCy document as an extension. For instance, if context=["note_datetime"], the corresponding value found in thenote_datetimecolumn will be stored indoc._.note_datetime, which can be useful e.g. for thedates` pipeline.

TYPE: List[str] DEFAULT: []

additional_spans

A name (or list of names) of SpanGroup on which to apply the pipe too: SpanGroup are available as doc.spans[spangroup_name] and can be generated by some pipes. For instance, the eds.dates pipeline component populates doc.spans['dates']

TYPE: Union[List[str], str], by default "discarded" DEFAULT: 'discarded'

extensions

Spans extensions to add to the extracted results: For instance, if extensions=["score_name"], the extracted result will include, for each entity, ent._.score_name.

TYPE: List[Tuple[str, T.DataType]], by default [] DEFAULT: {}

RETURNS DESCRIPTION
DataFrame

A pyspark DataFrame with one line per extraction

Source code in edsnlp/processing/distributed.py
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
@module_checker
def pipe(
    note: DataFrames,
    nlp: Language,
    context: List[str] = [],
    additional_spans: Union[List[str], str] = "discarded",
    extensions: Dict[str, T.DataType] = {},
) -> DataFrame:
    """
    Function to apply a spaCy pipe to a pyspark or koalas DataFrame note

    Parameters
    ----------
    note : DataFrame
        A Pyspark or Koalas DataFrame with a `note_id` and `note_text` column
    nlp : Language
        A spaCy pipe
    context : List[str]
        A list of column to add to the generated SpaCy document as an extension.
        For instance, if `context=["note_datetime"], the corresponding value found
        in the `note_datetime` column will be stored in `doc._.note_datetime`,
        which can be useful e.g. for the `dates` pipeline.
    additional_spans : Union[List[str], str], by default "discarded"
        A name (or list of names) of SpanGroup on which to apply the pipe too:
        SpanGroup are available as `doc.spans[spangroup_name]` and can be generated
        by some pipes. For instance, the `eds.dates` pipeline
        component populates `doc.spans['dates']`
    extensions : List[Tuple[str, T.DataType]], by default []
        Spans extensions to add to the extracted results:
        For instance, if `extensions=["score_name"]`, the extracted result
        will include, for each entity, `ent._.score_name`.

    Returns
    -------
    DataFrame
        A pyspark DataFrame with one line per extraction
    """

    if context:
        check_spacy_version_for_context()

    spark = SparkSession.builder.enableHiveSupport().getOrCreate()
    sc = spark.sparkContext

    if not nlp.has_pipe("eds.context"):
        nlp.add_pipe("eds.context", first=True, config=dict(context=context))

    nlp_bc = sc.broadcast(nlp)

    def _udf_factory(
        additional_spans: Union[List[str], str] = "discarded",
        extensions: Dict[str, T.DataType] = dict(),
    ):

        schema = T.ArrayType(
            T.StructType(
                [
                    T.StructField("lexical_variant", T.StringType(), False),
                    T.StructField("label", T.StringType(), False),
                    T.StructField("span_type", T.StringType(), True),
                    T.StructField("start", T.IntegerType(), False),
                    T.StructField("end", T.IntegerType(), False),
                    *[
                        T.StructField(slugify(extension_name), extension_type, True)
                        for extension_name, extension_type in extensions.items()
                    ],
                ]
            )
        )

        def f(
            text,
            *context_values,
            additional_spans=additional_spans,
            extensions=extensions,
        ):

            if text is None:
                return []

            nlp = nlp_bc.value

            for _, pipe in nlp.pipeline:
                if isinstance(pipe, BaseComponent):
                    pipe.set_extensions()

            doc = nlp.make_doc(text)
            for context_name, context_value in zip(context, context_values):
                doc._.set(context_name, context_value)
            doc = nlp(doc)

            ents = []

            for ent in doc.ents:
                parsed_extensions = [
                    rgetattr(ent._, extension) for extension in extensions.keys()
                ]

                ents.append(
                    (
                        ent.text,
                        ent.label_,
                        "ents",
                        ent.start_char,
                        ent.end_char,
                        *parsed_extensions,
                    )
                )

            if additional_spans is None:
                return ents

            if type(additional_spans) == str:
                additional_spans = [additional_spans]

            for spans_name in additional_spans:

                for ent in doc.spans.get(spans_name, []):

                    parsed_extensions = [
                        rgetattr(ent._, extension) for extension in extensions.keys()
                    ]

                    ents.append(
                        (
                            ent.text,
                            ent.label_,
                            spans_name,
                            ent.start_char,
                            ent.end_char,
                            *parsed_extensions,
                        )
                    )

            return ents

        f_udf = F.udf(
            partial(
                f,
                additional_spans=additional_spans,
                extensions=extensions,
            ),
            schema,
        )

        return f_udf

    matcher = _udf_factory(
        additional_spans=additional_spans,
        extensions=extensions,
    )

    n_needed_partitions = max(note.count() // 2000, 1)  # Batch sizes of 2000

    note_nlp = note.repartition(n_needed_partitions).withColumn(
        "matches", matcher(F.col("note_text"), *[F.col(c) for c in context])
    )

    note_nlp = note_nlp.withColumn("matches", F.explode(note_nlp.matches))

    note_nlp = note_nlp.select("note_id", "matches.*")

    return note_nlp

custom_pipe(note, nlp, results_extractor, dtypes, context=[])

Function to apply a spaCy pipe to a pyspark or koalas DataFrame note, a generic callback function that converts a spaCy Doc object into a list of dictionaries.

PARAMETER DESCRIPTION
note

A Pyspark or Koalas DataFrame with a note_text column

TYPE: DataFrame

nlp

A spaCy pipe

TYPE: Language

results_extractor

Arbitrary function that takes extract serialisable results from the computed spaCy Doc object. The output of the function must be a list of dictionaries containing the extracted spans or entities.

There is no requirement for all entities to provide every dictionary key.

TYPE: Callable[[Doc], List[Dict[str, Any]]]

dtypes

Dictionary containing all expected keys from the results_extractor function, along with their types.

TYPE: Dict[str, T.DataType]

context

A list of column to add to the generated SpaCy document as an extension. For instance, if context=["note_datetime"], the corresponding value found in thenote_datetimecolumn will be stored indoc._.note_datetime, which can be useful e.g. for thedates` pipeline.

TYPE: List[str] DEFAULT: []

RETURNS DESCRIPTION
DataFrame

A pyspark DataFrame with one line per extraction

Source code in edsnlp/processing/distributed.py
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
@module_checker
def custom_pipe(
    note: DataFrames,
    nlp: Language,
    results_extractor: Callable[[Doc], List[Dict[str, Any]]],
    dtypes: Dict[str, T.DataType],
    context: List[str] = [],
) -> DataFrame:
    """
    Function to apply a spaCy pipe to a pyspark or koalas DataFrame note,
    a generic callback function that converts a spaCy `Doc` object into a
    list of dictionaries.

    Parameters
    ----------
    note : DataFrame
        A Pyspark or Koalas DataFrame with a `note_text` column
    nlp : Language
        A spaCy pipe
    results_extractor : Callable[[Doc], List[Dict[str, Any]]]
        Arbitrary function that takes extract serialisable results from the computed
        spaCy `Doc` object. The output of the function must be a list of dictionaries
        containing the extracted spans or entities.

        There is no requirement for all entities to provide every dictionary key.
    dtypes : Dict[str, T.DataType]
        Dictionary containing all expected keys from the `results_extractor` function,
        along with their types.
    context : List[str]
        A list of column to add to the generated SpaCy document as an extension.
        For instance, if `context=["note_datetime"], the corresponding value found
        in the `note_datetime` column will be stored in `doc._.note_datetime`,
        which can be useful e.g. for the `dates` pipeline.

    Returns
    -------
    DataFrame
        A pyspark DataFrame with one line per extraction
    """

    if context:
        check_spacy_version_for_context()

    if ("note_id" not in context) and ("note_id" in dtypes.keys()):
        context.append("note_id")

    spark = SparkSession.builder.enableHiveSupport().getOrCreate()
    sc = spark.sparkContext

    if not nlp.has_pipe("eds.context"):
        nlp.add_pipe("eds.context", first=True, config=dict(context=context))

    nlp_bc = sc.broadcast(nlp)

    schema = T.ArrayType(
        T.StructType([T.StructField(key, dtype) for key, dtype in dtypes.items()])
    )

    @F.udf(schema)
    def udf(
        text,
        *context_values,
    ):

        if text is None:
            return []

        nlp_ = nlp_bc.value

        for _, pipe in nlp.pipeline:
            if isinstance(pipe, BaseComponent):
                pipe.set_extensions()

        doc = nlp_.make_doc(text)
        for context_name, context_value in zip(context, context_values):
            doc._.set(context_name, context_value)

        doc = nlp_(doc)

        results = []

        for res in results_extractor(doc):
            results.append([res.get(key) for key in dtypes])

        return results

    note_nlp = note.withColumn(
        "matches", udf(F.col("note_text"), *[F.col(c) for c in context])
    )

    note_nlp = note_nlp.withColumn("matches", F.explode(note_nlp.matches))

    if ("note_id" not in dtypes.keys()) and ("note_id" in note_nlp.columns):
        note_nlp = note_nlp.select("note_id", "matches.*")
    else:
        note_nlp = note_nlp.select("matches.*")

    return note_nlp