Skip to content

CIM10

The eds.cim10 pipeline component matches the CIM10 (French-language ICD) terminology.

Very low recall

When using the exact' matching mode, this component has a very poor recall performance. We can use thesimstring` mode to retrieve approximate matches, albeit at the cost of a significantly higher computation time.

Usage

import spacy

nlp = spacy.blank("fr")
nlp.add_pipe("eds.cim10", config=dict(term_matcher="simstring"))

text = "Le patient est suivi pour fièvres typhoïde et paratyphoïde."

doc = nlp(text)

doc.ents
# Out: (fièvres typhoïde et paratyphoïde,)

ent = doc.ents[0]

ent.label_
# Out: cim10

ent.kb_id_
# Out: A01

Configuration

The pipeline can be configured using the following parameters :

PARAMETER DESCRIPTION
attr

Attribute to match on, eg TEXT, NORM, etc.

TYPE: Union[str, Dict[str, str]] DEFAULT: 'NORM'

ignore_excluded

Whether to skip excluded tokens during matching.

TYPE: bool DEFAULT: False

ignore_space_tokens

Whether to skip space tokens during matching.

TYPE: bool DEFAULT: False

term_matcher

The term matcher to use, either TerminologyTermMatcher.exact or TerminologyTermMatcher.simstring

TYPE: TerminologyTermMatcher DEFAULT: TerminologyTermMatcher.exact

term_matcher_config

The configuration for the term matcher

TYPE: Dict[str, Any] DEFAULT: {}

Authors and citation

The eds.cim10 pipeline was developed by AP-HP's Data Science team.