eds_scikit.event.diabetes
DEFAULT_DIABETE_FROM_ICD10_CONFIG
module-attribute
DEFAULT_DIABETE_FROM_ICD10_CONFIG = dict(
codes=dict(
DIABETES_TYPE_I=dict(prefix="E10"),
DIABETES_TYPE_II=dict(prefix="E11"),
DIABETES_MALNUTRITION=dict(prefix="E12"),
DIABETES_IN_PREGNANCY=dict(prefix="O24"),
OTHER_DIABETES_MELLITUS=dict(prefix=["E13", "E14"]),
DIABETES_INSIPIDUS=dict(exact=["E232", "N251"]),
),
date_from_visit=True,
additional_filtering=dict(
condition_status_source_value={"DP", "DAS"}
),
)
Default parameters feeded to conditions_from_icd10()
diabetes_from_icd10
diabetes_from_icd10(
condition_occurrence: DataFrame,
visit_occurrence: DataFrame,
date_min: Optional[datetime] = None,
date_max: Optional[datetime] = None,
codes: Dict[
str, Union[str, List[str]]
] = DEFAULT_DIABETE_FROM_ICD10_CONFIG["codes"],
date_from_visit: bool = DEFAULT_DIABETE_FROM_ICD10_CONFIG[
"date_from_visit"
],
additional_filtering: Dict[
str, Any
] = DEFAULT_DIABETE_FROM_ICD10_CONFIG[
"additional_filtering"
],
) -> DataFrame
Wrapper around the conditions_from_icd10() function. Check the default configuration to see the used parameters
| PARAMETER | DESCRIPTION |
|---|---|
condition_occurrence |
OMOP-like condition occurrence DataFrame
TYPE:
|
visit_occurrence |
OMOP-like visit_occurrence DataFrame
TYPE:
|
date_min |
Lower temporal bound
TYPE:
|
date_max |
Upper temporal bound
TYPE:
|
codes |
Dictionary of ICD-10 used for phenotyping
TYPE:
|
date_from_visit |
If true, use the
TYPE:
|
additional_filtering |
A dictionary to perform additional filtering.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
DataFrame
|
Event DataFrame in long format (with a
|
Source code in eds_scikit/event/diabetes.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | |