eds_scikit.biology.viz.wrapper
plot_biology_summary
plot_biology_summary(data: Data, concepts_sets: List[ConceptsSet] = None, start_date: datetime = None, end_date: datetime = None, save_folder_path: str = 'Biology_summary', number_of_concept: Tuple[str, int] = None, limit_count: Tuple[str, int] = None, standard_terminologies: List[str] = default_standard_terminologies, standard_concept_regex: dict = default_standard_concept_regex, pd_limit_size: int = 100000, stats_only: bool = False) -> Union[alt.ConcatChart, pd.DataFrame]
It aggregates, plots and saves all the concepts-sets in folders.
PARAMETER | DESCRIPTION |
---|---|
data |
Instantiated
TYPE:
|
concepts_sets |
List of concepts-sets to select
TYPE:
|
start_date |
EXAMPLE:
TYPE:
|
end_date |
EXAMPLE:
TYPE:
|
save_folder_path |
Name of the folder where the plots will be saved
TYPE:
|
number_of_concept |
The maximum number of concepts for a given terminology
EXAMPLE:
TYPE:
|
limit_count |
The minimum number of observations per concepts for a given terminology
EXAMPLE:
TYPE:
|
standard_terminologies |
EXAMPLE:
TYPE:
|
standard_concept_regex |
EXAMPLE:
TYPE:
|
pd_limit_size |
The limit number of rows to convert Koalas DatFrame into Pandas DataFrame
TYPE:
|
stats_only |
If
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List[alt.ConcatChart, pd.DataFrame]
|
Altair plots describing the volumetric and the distribution properties of your biological data along with a pandas DataFrame with a statistical summary |
Source code in eds_scikit/biology/viz/wrapper.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|