eds_scikit.period.stays
cleaning
cleaning(vo, long_stay_threshold: timedelta, long_stay_filtering: Union[str, None], remove_deleted_visits: bool, open_stay_end_datetime: datetime) -> Tuple[DataFrame, DataFrame]
Preprocessing of visits before merging them in stays.
The function will split the input vo
DataFrame into 2, one that
should undergo the merging procedure, and one that shouldn't.
Depending on the input parameters, 3 type of visits can be prevented to
undergo the merging procedure:
- Too long visits
- Too long AND unclosed visits
- Removed visits
See the merge_visits() function for details of the parameters
Source code in eds_scikit/period/stays.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
|
merge_visits
merge_visits(vo: DataFrame, remove_deleted_visits: bool = True, long_stay_threshold: timedelta = timedelta(days=365), long_stay_filtering: Optional[str] = 'all', open_stay_end_datetime: Optional[datetime] = None, max_timedelta: timedelta = timedelta(days=2), merge_different_hospitals: bool = False, merge_different_source_values: Union[bool, List[str]] = ['hospitalisés', 'urgence']) -> DataFrame
Merge "close" visit occurrences to consider them as a single stay
by adding a STAY_ID
and CONTIGUOUS_STAY_ID
columns to the DataFrame.
The value of these columns will be the visit_occurrence_id
of the first (meaning the oldest)
visit of the stay.
From a temporal point of view, we consider that two visits belong to the same stay if either:
- They intersect
- The time difference between the end of the most recent and the start of the oldest
is lower than
max_timedelta
(forSTAY_ID
) or 0 (forCONTIGUOUS_STAY_ID
)
Additionally, other parameters are available to further adjust the merging rules. See below.
PARAMETER | DESCRIPTION |
---|---|
vo |
The
TYPE:
|
remove_deleted_visits |
Wether to remove deleted visits from the merging procedure.
Deleted visits are extracted via the
TYPE:
|
long_stay_filtering |
Filtering method for long and/or non-closed visits. First of all, visits with no starting date
won't be merged with any other visit, and visits with no ending date will have a temporary
"theoretical" ending date set by
Long stays are determined by the
TYPE:
|
long_stay_threshold |
Minimum visit duration value to consider a visit as candidate for "long visits filtering"
TYPE:
|
open_stay_end_datetime |
Datetime to use in order to fill the
TYPE:
|
max_timedelta |
Maximum time difference between the end of a visit and the start of another to consider
them as belonging to the same stay. This duration is internally converted in seconds before
comparing. Thus, if you want e.g. to merge visits happening in two consecutive days, you should use
TYPE:
|
merge_different_hospitals |
Wether to allow visits occurring in different hospitals to be merged into a same stay
TYPE:
|
merge_different_source_values |
Wether to allow visits with different
Warning: You should avoid merging visits where
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
vo
|
Visit occurrence DataFrame with additional
TYPE:
|
Examples:
>>> import pandas as pd
>>> from datetime import datetime, timedelta
>>> data = {
1 : ['A', 999, datetime(2021,1,1), datetime(2021,1,5), 'hospitalisés'],
2 : ['B', 999, datetime(2021,1,4), datetime(2021,1,8), 'hospitalisés'],
3 : ['C', 999, datetime(2021,1,12), datetime(2021,1,18), 'hospitalisés'],
4 : ['D', 999, datetime(2021,1,13), datetime(2021,1,14), 'urgence'],
5 : ['E', 999, datetime(2021,1,19), datetime(2021,1,21), 'hospitalisés'],
6 : ['F', 999, datetime(2021,1,25), datetime(2021,1,27), 'hospitalisés'],
7 : ['G', 999, datetime(2017,1,1), None, "hospitalisés"]
}
>>> vo = pd.DataFrame.from_dict(
data,
orient="index",
columns=[
"visit_occurrence_id",
"person_id",
"visit_start_datetime",
"visit_end_datetime",
"visit_source_value",
],
)
>>> vo
visit_occurrence_id person_id visit_start_datetime visit_end_datetime visit_source_value
1 A 999 2021-01-01 2021-01-05 hospitalisés
2 B 999 2021-01-04 2021-01-08 hospitalisés
3 C 999 2021-01-12 2021-01-18 hospitalisés
4 D 999 2021-01-13 2021-01-14 urgence
5 E 999 2021-01-19 2021-01-21 hospitalisés
6 F 999 2021-01-25 2021-01-27 hospitalisés
7 G 999 2017-01-01 NaT hospitalisés
>>> vo = merge_visits(
vo,
remove_deleted_visits=True,
long_stay_threshold=timedelta(days=365),
long_stay_filtering="all",
max_timedelta=timedelta(hours=24),
merge_different_hospitals=False,
merge_different_source_values=["hospitalisés", "urgence"],
)
>>> vo
visit_occurrence_id person_id visit_start_datetime visit_end_datetime visit_source_value STAY_ID CONTIGUOUS_STAY_ID
1 A 999 2021-01-01 2021-01-05 hospitalisés A A
2 B 999 2021-01-04 2021-01-08 hospitalisés A A
3 C 999 2021-01-12 2021-01-18 hospitalisés C C
4 D 999 2021-01-13 2021-01-14 urgence C C
5 E 999 2021-01-19 2021-01-21 hospitalisés C E
6 F 999 2021-01-25 2021-01-27 hospitalisés F F
7 G 999 2017-01-01 NaT hospitalisés G G
Source code in eds_scikit/period/stays.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
|
get_stays_duration
get_stays_duration(vo: DataFrame, algo: str = 'sum_of_visits_duration', missing_end_date_handling: str = 'fill', open_stay_end_datetime: Optional[datetime] = None) -> DataFrame
Computes stay duration.
The input DataFrame should contain the STAY_ID
and CONTIGUOUS_STAY_ID
columns,
that can be computed via the merge_visits()
function.
PARAMETER | DESCRIPTION |
---|---|
vo |
visit occurrence DataFrame with the
TYPE:
|
algo |
Which algo to use for computing stay durations. Available values are:
TYPE:
|
missing_end_date_handling |
How to handle visits with no end date. Available values are:
TYPE:
|
open_stay_end_datetime |
Used if
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DataFrame
|
stay DataFrame with
|
RAISES | DESCRIPTION |
---|---|
MissingConceptError
|
If |
Source code in eds_scikit/period/stays.py
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
|