eds_scikit.io
PandasData
PandasData(folder: str)
Bases: BaseData
Pandas interface to OMOP data stored as local parquet files/folders.
PARAMETER | DESCRIPTION |
---|---|
folder |
absolute path to a folder containing several parquet files with OMOP data
TYPE:
|
Examples:
>>> data = PandasData(folder="/export/home/USER/my_data/")
>>> person = data.person
>>> person.shape
(100, 10)
Source code in eds_scikit/io/files.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
PostgresData
PostgresData(dbname: Optional[str] = None, schema: Optional[str] = None, user: Optional[str] = None, host: Optional[str] = None, port: Optional[int] = None)
Bases: BaseData
Source code in eds_scikit/io/postgres.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
read_sql
read_sql(sql_query: str, **kwargs) -> pd.DataFrame
Execute pandas.read_sql() on the database.
PARAMETER | DESCRIPTION |
---|---|
sql_query |
SQL query (postgres flavor)
TYPE:
|
**kwargs |
additional arguments passed to pandas.read_sql()
DEFAULT:
|
RETURNS | DESCRIPTION |
---|---|
df
|
TYPE:
|
Source code in eds_scikit/io/postgres.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
|
HiveData
HiveData(database_name: str, spark_session: Optional[SparkSession] = None, person_ids: Optional[Iterable[int]] = None, tables_to_load: Optional[Union[Dict[str, Optional[List[str]]], List[str]]] = None, columns_to_load: Optional[Union[Dict[str, Optional[List[str]]], List[str]]] = None, database_type: Optional[str] = 'OMOP', prune_omop_date_columns: bool = True, cache: bool = True)
Bases: BaseData
Spark interface for OMOP data stored in a Hive database.
This class provides a simple access to data stored in Hive. Data is returned as koalas dataframes that match the tables stored in Hive.
PARAMETER | DESCRIPTION |
---|---|
database_name |
The name of you database in Hive. Ex: "cse_82727572"
TYPE:
|
spark_session |
If None, a SparkSession will be retrieved or created via
TYPE:
|
person_ids |
An iterable of
TYPE:
|
tables_to_load |
deprecated
TYPE:
|
columns_to_load |
deprecated
TYPE:
|
database_type |
Whether to use the native OMOP schema or to convert I2B2 inputs to OMOP.
TYPE:
|
prune_omop_date_columns |
In OMOP, most date values are stored both in a
TYPE:
|
cache |
Whether to cache each table after preprocessing or not. Will speed-up subsequent calculations, but can be long/infeasable for very large tables
TYPE:
|
ATTRIBUTE | DESCRIPTION |
---|---|
person |
Hive data for table
TYPE:
|
available_tables |
names of OMOP tables that can be accessed as attributes with this HiveData object.
TYPE:
|
Examples:
data = HiveData(database_name="edsomop_prod_a")
data.available_tables
# Out: ["person", "care_site", "condition_occurrence", ... ]
person = data.person
type(person)
# Out: databricks.koalas.frame.DataFrame
person["person_id"].count()
# Out: 12670874
This class can be used to create a subset of data for a given
list of person_id
. This is useful because the smaller dataset
can then be used to prototype more rapidly.
my_person_ids = [9226726, 2092082, ...]
data = HiveData(
spark_session=spark, database_name="edsomop_prod_a", person_ids=my_person_ids
)
data.person["person_id"].count()
# Out: 1000
tables_to_save = ["person", "visit_occurrence"]
data.persist_tables_to_folder("./cohort_sample_1000", table_names=tables_to_save)
# Out: writing /export/home/USER/cohort_sample_1000/person.parquet
# Out: writing /export/home/USER/cohort_sample_1000/visit_occurrence.parquet
# Out: ...
Source code in eds_scikit/io/hive.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
persist_tables_to_folder
persist_tables_to_folder(folder: str, person_ids: Optional[Iterable[int]] = None, tables: List[str] = None, overwrite: bool = False) -> None
Save OMOP tables as parquet files in a given folder.
PARAMETER | DESCRIPTION |
---|---|
folder |
path to folder where the tables will be written.
TYPE:
|
person_ids : iterable person_ids to keep in the subcohort.
tables : list of str, default None
list of table names to save. Default value is
data:~eds_scikit.io.settings.default_tables_to_save
.
overwrite : bool, default=False whether to overwrite files if 'folder' already exists.
Source code in eds_scikit/io/hive.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
|
get_db_path
get_db_path()
Get the HDFS path of the database
Source code in eds_scikit/io/hive.py
374 375 376 377 378 379 380 381 |
|